Glioblastoma (GBM) treatment includes, when possible, surgical resection of the tumor followed by radiotherapy and oral chemotherapy with temozolomide, however recurrences quickly develop around the resection cavity borders leading to patient death. We hypothesize that the local delivery of Lauroyl-gemcitabine lipid nanocapsule based hydrogel (GemC12-LNC) in the tumor resection cavity of GBM is a promising strategy as it would allow to bypass the blood brain barrier, thus reaching high local concentrations of the drug. The cytotoxicity and internalization pathways of GemC12-LNC were studied on different GBM cell lines (U251, T98-G, 9L-LacZ, U-87 MG). The GemC12-LNC hydrogel was well tolerated when injected in mouse brain. In an orthotopic xenograft model, after intratumoral administration, GemC12-LNC significantly increased mice survival compared to the controls. Moreover, its ability to delay tumor recurrences was demonstrated after perisurgical administration in the GBM resection cavity. In conclusion, we demonstrate that GemC12-LNC hydrogel could be considered as a promising tool for the post-resection management of GBM, prior to the standard of care chemo-radiation.

Injectable nanomedicine hydrogel for local chemotherapy of glioblastoma after surgical resection

Bastiancich C.
First
;
2017-01-01

Abstract

Glioblastoma (GBM) treatment includes, when possible, surgical resection of the tumor followed by radiotherapy and oral chemotherapy with temozolomide, however recurrences quickly develop around the resection cavity borders leading to patient death. We hypothesize that the local delivery of Lauroyl-gemcitabine lipid nanocapsule based hydrogel (GemC12-LNC) in the tumor resection cavity of GBM is a promising strategy as it would allow to bypass the blood brain barrier, thus reaching high local concentrations of the drug. The cytotoxicity and internalization pathways of GemC12-LNC were studied on different GBM cell lines (U251, T98-G, 9L-LacZ, U-87 MG). The GemC12-LNC hydrogel was well tolerated when injected in mouse brain. In an orthotopic xenograft model, after intratumoral administration, GemC12-LNC significantly increased mice survival compared to the controls. Moreover, its ability to delay tumor recurrences was demonstrated after perisurgical administration in the GBM resection cavity. In conclusion, we demonstrate that GemC12-LNC hydrogel could be considered as a promising tool for the post-resection management of GBM, prior to the standard of care chemo-radiation.
264
45
54
Gemcitabine; Glioblastoma; Hydrogel; Lipid nanocapsules; Local delivery; Nanomedicine
Bastiancich C.; Bianco J.; Vanvarenberg K.; Ucakar B.; Joudiou N.; Gallez B.; Bastiat G.; Lagarce F.; Preat V.; Danhier F.
File in questo prodotto:
File Dimensione Formato  
Bastiancich JCR 2017 efficacy mice.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1879768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 78
social impact