Typical features of lightning distribution in the mountain area of Mt. Cimone (2165 m a.s.l., Northern-Central Italy) have been studied through detections provided by the ground-based LIghtning NETwork data (LINET) and the Lightning Imaging Sensor (LIS) onboard the International Space Station (ISS-LIS). This study was performed within the context of the Gamma-Flash program, which includes the in situ observation of high-energy radiation (e.g., Terrestrial Gamma-ray Flashes (TGFs), gamma-ray glows) and neutron emissions from thunderstorms at the mountain-top "O. Vittori" climate observatory. LINET VLF/LF radio measurements allowed the characterization of both cloud-to-ground (CG) and intra-cloud (IC) strokes' geographical distribution and an altitude of occurrence from 2012 through 2020. The lightning distribution showed a remarkable clustering of CGs at the mountain top in contrast to a homogeneous distribution of ICs, highlighting the likely impact of orography. IC strokes peaked around 4 to 6 km altitude, in agreement with the observed typical cloud range. The joint exploitation of ISS-LIS optical observations of LINET detections extended the study to further features of flashes not seen in radio wavelengths and stands as the cross-validation of the two detection methods over such a complex orography. These results gave the quantitative indication of the expected occurrence of lightning and ionizing radiation emissions in the Mt. Cimone area and an example of mountain-driven changes in lightning occurrence.
A Joint LINET and ISS-LIS View of Lightning Distribution over the Mt. Cimone Area within the GAMMA-FLASH Program
Arnone, E;
2022-01-01
Abstract
Typical features of lightning distribution in the mountain area of Mt. Cimone (2165 m a.s.l., Northern-Central Italy) have been studied through detections provided by the ground-based LIghtning NETwork data (LINET) and the Lightning Imaging Sensor (LIS) onboard the International Space Station (ISS-LIS). This study was performed within the context of the Gamma-Flash program, which includes the in situ observation of high-energy radiation (e.g., Terrestrial Gamma-ray Flashes (TGFs), gamma-ray glows) and neutron emissions from thunderstorms at the mountain-top "O. Vittori" climate observatory. LINET VLF/LF radio measurements allowed the characterization of both cloud-to-ground (CG) and intra-cloud (IC) strokes' geographical distribution and an altitude of occurrence from 2012 through 2020. The lightning distribution showed a remarkable clustering of CGs at the mountain top in contrast to a homogeneous distribution of ICs, highlighting the likely impact of orography. IC strokes peaked around 4 to 6 km altitude, in agreement with the observed typical cloud range. The joint exploitation of ISS-LIS optical observations of LINET detections extended the study to further features of flashes not seen in radio wavelengths and stands as the cross-validation of the two detection methods over such a complex orography. These results gave the quantitative indication of the expected occurrence of lightning and ionizing radiation emissions in the Mt. Cimone area and an example of mountain-driven changes in lightning occurrence.File | Dimensione | Formato | |
---|---|---|---|
remotesensing-14-03501-v2.pdf
Accesso aperto
Dimensione
5.02 MB
Formato
Adobe PDF
|
5.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.