Cytosolic delivery remains a major bottleneck for siRNA therapeutics. To facilitate delivery, siRNAs are often enclosed in nanoparticles (NPs). However, upon endocytosis such NPs are mainly trafficked towards lysosomes. To avoid degradation, cytosolic release of siRNA should occur prior to fusion of endosomes with lysosomes, but current endosomal escape strategies remain inefficient. In contrast to this paradigm, we aim to exploit lysosomal accumulation by treating NP-transfected cells with low molecular weight drugs that release the siRNA from the lysosomes into the cytosol. We show that FDA-approved cationic amphiphilic drugs (CADs) significantly improved gene silencing by siRNA-loaded nanogels in cancer cells through simple sequential incubation. CADs induced lysosomal phospholipidosis, leading to transient lysosomal membrane permeabilization and improved siRNA release without cytotoxicity. Of note, the lysosomes could be applied as an intracellular depot for triggered siRNA release by multiple CAD treatments.

Repurposing cationic amphiphilic drugs as adjuvants to induce lysosomal siRNA escape in nanogel transfected cells

Bastiancich C.;
2018-01-01

Abstract

Cytosolic delivery remains a major bottleneck for siRNA therapeutics. To facilitate delivery, siRNAs are often enclosed in nanoparticles (NPs). However, upon endocytosis such NPs are mainly trafficked towards lysosomes. To avoid degradation, cytosolic release of siRNA should occur prior to fusion of endosomes with lysosomes, but current endosomal escape strategies remain inefficient. In contrast to this paradigm, we aim to exploit lysosomal accumulation by treating NP-transfected cells with low molecular weight drugs that release the siRNA from the lysosomes into the cytosol. We show that FDA-approved cationic amphiphilic drugs (CADs) significantly improved gene silencing by siRNA-loaded nanogels in cancer cells through simple sequential incubation. CADs induced lysosomal phospholipidosis, leading to transient lysosomal membrane permeabilization and improved siRNA release without cytotoxicity. Of note, the lysosomes could be applied as an intracellular depot for triggered siRNA release by multiple CAD treatments.
2018
269
266
276
Cationic amphiphilic drugs; Drug repurposing; Lysosomal membrane permeabilization; Nanogels; Phospholipidosis; siRNA delivery
Joris F.; De Backer L.; Van de Vyver T.; Bastiancich C.; De Smedt S.C.; Raemdonck K.
File in questo prodotto:
File Dimensione Formato  
Joris 2018.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1879904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 39
social impact