In this paper, we study an extension of the CPE conjecture to manifolds $M$ which support a structure relating curvature to the geometry of a smooth map $\varphi : M \to N$. The resulting system, denoted by $(\varphi-\mathrm{CPE})$, is natural from the variational viewpoint and describes stationary points for the integrated $\varphi$-scalar curvature functional restricted to metrics with unit volume and constant $\varphi$-scalar curvature. We prove both a rigidity statement for solutions to $(\varphi-\mathrm{CPE})$ in a conformal class, and a gap theorem characterizing the round sphere among manifolds supporting $(\varphi-\mathrm{CPE})$ with $\varphi$ a harmonic map.

Einstein-type structures, Besse's conjecture and a uniqueness result for a $\varphi$-CPE metric in its conformal class

Luciano Mari;Marco Rigoli
2022-01-01

Abstract

In this paper, we study an extension of the CPE conjecture to manifolds $M$ which support a structure relating curvature to the geometry of a smooth map $\varphi : M \to N$. The resulting system, denoted by $(\varphi-\mathrm{CPE})$, is natural from the variational viewpoint and describes stationary points for the integrated $\varphi$-scalar curvature functional restricted to metrics with unit volume and constant $\varphi$-scalar curvature. We prove both a rigidity statement for solutions to $(\varphi-\mathrm{CPE})$ in a conformal class, and a gap theorem characterizing the round sphere among manifolds supporting $(\varphi-\mathrm{CPE})$ with $\varphi$ a harmonic map.
2022
32
1
32
http://arxiv.org/abs/2201.00263v2
Giulio Colombo; Luciano Mari; Marco Rigoli
File in questo prodotto:
File Dimensione Formato  
CPE_Besse_revised_12_7.pdf

Accesso aperto

Descrizione: arXiv file
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 818.52 kB
Formato Adobe PDF
818.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1882640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact