Gas sensors that are based on metal oxides are extensively used to detect gaseous compounds in many different applications. One of the main tasks for improving the sensor performances is to understand the mechanism at the base of the sensing properties for each specific material. In this work, pure and mixed oxides were selected and synthesized in the form of nanometric powders. They were characterized by spectroscopic techniques, i.e., absorbance FT–IR and diffuse reflectance UV–Vis–NIR spectroscopies, to obtain information about the electronic properties and the type of defects that are involved at the root of the gas-sensing capabilities. The electrical characterization and the gas-sensing measurements were carried out on the related thick films. Finally, for each material, a description of the specific sensing mechanism is proposed by combining the characterization results.

Spectroscopic–Electrical Combined Analysis to Assess the Conduction Mechanisms and the Performances of Metal Oxide Gas Sensors †

Morandi S.;
2022-01-01

Abstract

Gas sensors that are based on metal oxides are extensively used to detect gaseous compounds in many different applications. One of the main tasks for improving the sensor performances is to understand the mechanism at the base of the sensing properties for each specific material. In this work, pure and mixed oxides were selected and synthesized in the form of nanometric powders. They were characterized by spectroscopic techniques, i.e., absorbance FT–IR and diffuse reflectance UV–Vis–NIR spectroscopies, to obtain information about the electronic properties and the type of defects that are involved at the root of the gas-sensing capabilities. The electrical characterization and the gas-sensing measurements were carried out on the related thick films. Finally, for each material, a description of the specific sensing mechanism is proposed by combining the characterization results.
2022
10
11
447
458
electrical characterization; nanostructured semiconductor oxides; sensing mechanisms; thick film gas sensors; UV–Vis–NIR and FT–IR spectroscopies
Fioravanti A.; Morandi S.; Carotta M.C.
File in questo prodotto:
File Dimensione Formato  
Chemosensors 10 (2022) 447.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1883572
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact