The binding energies (BE) of molecules on the interstellar grains are crucial in the chemical evolution of the interstellar medium (ISM). Both temperature-programmed desorption (TPD) laboratory experiments and quantum chemistry computations have often provided, so far, only single values of the BE for each molecule. This is a severe limitation, as the ices enveloping the grain mantles are structurally amorphous, giving rise to a manifold of possible adsorption sites, each with different BEs. However, the amorphous ice nature prevents the knowledge of structural details, hindering the development of a common accepted atomistic icy model. In this work, we propose a computational framework that closely mimics the formation of the interstellar grain mantle through a water by water accretion. On that grain, an unbiased random (but well reproducible) positioning of the studied molecule is then carried out. Here we present the test case of NH3, a ubiquitous species in the molecular ISM. We provide the BE distribution computed by a hierarchy approach, using the semiempirical xTB-GFN2 as a low-level method to describe the whole icy duster in combination with the B97D3 DFT functional as a high-level method on the local zone of the NH3 interaction. The final ZPE-corrected BE is computed at the ONIOM(DLPNO-CCSD(T)//B97D3:xTB-GFN2) level, ensuring the best cost/accuracy ratio. The main peak of the predicted NH3 BE distribution is in agreement with experimental TPD and computed data in the literature. A second broad peak at very low BE values is also present, which has never been detected before. It may provide the solution to a longstanding puzzle about the presence of gaseous NH3 also observed in cold ISM objects.

Theoretical Distribution of the Ammonia Binding Energy at Interstellar Icy Grains: A New Computational Framework

Tinacci, Lorenzo
First
;
Pantaleone, Stefano;Ugliengo, Piero
Last
2022-01-01

Abstract

The binding energies (BE) of molecules on the interstellar grains are crucial in the chemical evolution of the interstellar medium (ISM). Both temperature-programmed desorption (TPD) laboratory experiments and quantum chemistry computations have often provided, so far, only single values of the BE for each molecule. This is a severe limitation, as the ices enveloping the grain mantles are structurally amorphous, giving rise to a manifold of possible adsorption sites, each with different BEs. However, the amorphous ice nature prevents the knowledge of structural details, hindering the development of a common accepted atomistic icy model. In this work, we propose a computational framework that closely mimics the formation of the interstellar grain mantle through a water by water accretion. On that grain, an unbiased random (but well reproducible) positioning of the studied molecule is then carried out. Here we present the test case of NH3, a ubiquitous species in the molecular ISM. We provide the BE distribution computed by a hierarchy approach, using the semiempirical xTB-GFN2 as a low-level method to describe the whole icy duster in combination with the B97D3 DFT functional as a high-level method on the local zone of the NH3 interaction. The final ZPE-corrected BE is computed at the ONIOM(DLPNO-CCSD(T)//B97D3:xTB-GFN2) level, ensuring the best cost/accuracy ratio. The main peak of the predicted NH3 BE distribution is in agreement with experimental TPD and computed data in the literature. A second broad peak at very low BE values is also present, which has never been detected before. It may provide the solution to a longstanding puzzle about the presence of gaseous NH3 also observed in cold ISM objects.
2022
6
6
1514
1526
https://pubs.acs.org/doi/pdf/10.1021/acsearthspacechem.2c00040?src=getftr
amorphous water ice; xTB-GFN2; ONIOM; DLPNO; B97D3; NH3 adsorption; NH3 binding energy
Tinacci, Lorenzo; Germain, Auréle; Pantaleone, Stefano; Ferrero, Stefano; Ceccarelli, Cecilia; Ugliengo, Piero
File in questo prodotto:
File Dimensione Formato  
tinacci_acsearthspacechem.2c00040.pdf

Accesso aperto

Descrizione: pdf open
Tipo di file: PDF EDITORIALE
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1884022
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 12
social impact