Since the beginning of this century, the world has experienced a growing need for enabling techniques and more environmentally friendly protocols that can facilitate more rational industrial production. Scientists are faced with the major challenges of global warming and safeguarding water and food quality. Organic solvents are still widely used and seem to be hard to replace, despite their enormous environmental and toxicological impact. The development of water-based strategies for the extraction of primary and secondary metabolites from plants on a laboratory scale is well documented, with several intensified processes being able to maximize the extraction power of water. Technologies, such as ultrasound, hydrodynamic cavitation, microwaves and pressurized reactors that achieve subcritical water conditions can dramatically increase extraction rates and yields. In addition, significant synergistic effects have been observed when using combined techniques. Due to the limited penetration depth of microwaves and ultrasonic waves, scaling up entails changes to reactor design. Nevertheless, the rich academic literature from laboratory-scale investigations may contribute to the engineering work involved in maximizing mass/energy transfer. In this article, we provide an overview of current and innovative techniques for solid-liquid extraction in water for industrial applications, where continuous and semi-continuous processes can meet the high demands for productivity, profitability and quality.
Plant Extraction in Water: Towards Highly Efficient Industrial Applications
Lorenzo GallinaFirst
;Christian Cravotto;Giorgio Capaldi;Giorgio Grillo;Giancarlo Cravotto
Last
2022-01-01
Abstract
Since the beginning of this century, the world has experienced a growing need for enabling techniques and more environmentally friendly protocols that can facilitate more rational industrial production. Scientists are faced with the major challenges of global warming and safeguarding water and food quality. Organic solvents are still widely used and seem to be hard to replace, despite their enormous environmental and toxicological impact. The development of water-based strategies for the extraction of primary and secondary metabolites from plants on a laboratory scale is well documented, with several intensified processes being able to maximize the extraction power of water. Technologies, such as ultrasound, hydrodynamic cavitation, microwaves and pressurized reactors that achieve subcritical water conditions can dramatically increase extraction rates and yields. In addition, significant synergistic effects have been observed when using combined techniques. Due to the limited penetration depth of microwaves and ultrasonic waves, scaling up entails changes to reactor design. Nevertheless, the rich academic literature from laboratory-scale investigations may contribute to the engineering work involved in maximizing mass/energy transfer. In this article, we provide an overview of current and innovative techniques for solid-liquid extraction in water for industrial applications, where continuous and semi-continuous processes can meet the high demands for productivity, profitability and quality.File | Dimensione | Formato | |
---|---|---|---|
processes-10-02233.pdf
Accesso aperto
Tipo di file:
PDF EDITORIALE
Dimensione
3.42 MB
Formato
Adobe PDF
|
3.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.