The piezoresistive behaviour of SEBS-CNTs nanocomposites was investigated to evaluate their. potential applications as strain sensors. Composites containing from 3%wt. to 7%wt. of CNTs were processed by injection moulding in order to evaluate the percolation threshold. The piezoresistive response under flexural strain of nanocomposites with a CNTs content above the percolation threshold was then studied. The nanocomposites showing the most promising performance were tested under cyclic conditions. Conductive tracks were then processed on nanocomposites surfaces (with 3 and 4% of CNTs) by means of a laser treatment. Samples with optimized laser tracks were then submitted to 1000 stretching/releasing cycles, showing improved piezoresistive performance.
Effect of long-term mechanical cycling and laser surface treatment on piezoresistive properties of SEBS-CNTs composites
Padovano E.;De Meo E.;
2020-01-01
Abstract
The piezoresistive behaviour of SEBS-CNTs nanocomposites was investigated to evaluate their. potential applications as strain sensors. Composites containing from 3%wt. to 7%wt. of CNTs were processed by injection moulding in order to evaluate the percolation threshold. The piezoresistive response under flexural strain of nanocomposites with a CNTs content above the percolation threshold was then studied. The nanocomposites showing the most promising performance were tested under cyclic conditions. Conductive tracks were then processed on nanocomposites surfaces (with 3 and 4% of CNTs) by means of a laser treatment. Samples with optimized laser tracks were then submitted to 1000 stretching/releasing cycles, showing improved piezoresistive performance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.