Irinotecan, a widely prescribed anticancer drug, is an emerging contaminant of concern that has been detected in various aquatic environments due to ineffective removal by traditional wastewater treatment systems. Solar photodegradation is a viable approach that can effectively eradicate the drug from aqueous systems. In this study, we used the design of experiment (DOE) approach to explore the robustness of irinotecan photodegradation under simulated solar irradiation. A full factorial design, including a star design, was applied to study the effects of three parameters: initial concentration of irinotecan (1.0-9.0 mg/L), pH (5.0-9.0), and irradiance (450-750 W/m(2)). A high-performance liquid chromatography coupled with a high-resolution mass spectrometry (HPLC-HRMS) system was used to determine irinotecan and identify transformation products. The photodegradation of irinotecan followed a pseudo-first order kinetics. In the best-fitted linear model determined by the stepwise model fitting approach, pH was found to have about 100-fold greater effect than either irinotecan concentration or solar irradiance. Under optimal conditions (irradiance of 750 W/m(2), 1.0 mg/L irinotecan concentration, and pH 9.0), more than 98% of irinotecan was degraded in 60 min. With respect to irradiance and irinotecan concentration, the degradation process was robust in the studied range, implying that it may be effectively applied in locations and/or seasons with solar irradiance as low as 450 W/m(2). However, pH needs to be strictly controlled and kept between 7.0 and 9.0 to maintain the degradation process robust. Considerations about the behavior of degradation products were also drawn.

Solar photodegradation of irinotecan in water: optimization and robustness studies by experimental design

Dal Bello, Federica;Fabbri, Debora;Medana, Claudio
;
2023-01-01

Abstract

Irinotecan, a widely prescribed anticancer drug, is an emerging contaminant of concern that has been detected in various aquatic environments due to ineffective removal by traditional wastewater treatment systems. Solar photodegradation is a viable approach that can effectively eradicate the drug from aqueous systems. In this study, we used the design of experiment (DOE) approach to explore the robustness of irinotecan photodegradation under simulated solar irradiation. A full factorial design, including a star design, was applied to study the effects of three parameters: initial concentration of irinotecan (1.0-9.0 mg/L), pH (5.0-9.0), and irradiance (450-750 W/m(2)). A high-performance liquid chromatography coupled with a high-resolution mass spectrometry (HPLC-HRMS) system was used to determine irinotecan and identify transformation products. The photodegradation of irinotecan followed a pseudo-first order kinetics. In the best-fitted linear model determined by the stepwise model fitting approach, pH was found to have about 100-fold greater effect than either irinotecan concentration or solar irradiance. Under optimal conditions (irradiance of 750 W/m(2), 1.0 mg/L irinotecan concentration, and pH 9.0), more than 98% of irinotecan was degraded in 60 min. With respect to irradiance and irinotecan concentration, the degradation process was robust in the studied range, implying that it may be effectively applied in locations and/or seasons with solar irradiance as low as 450 W/m(2). However, pH needs to be strictly controlled and kept between 7.0 and 9.0 to maintain the degradation process robust. Considerations about the behavior of degradation products were also drawn.
2023
22
4
761
772
https://link.springer.com/article/10.1007/s43630-022-00350-9
Design of experiments; Emerging contaminants; Irinotecan; Photodegradation; Robustness; Water
Belay, Masho Hilawie; Dal Bello, Federica; Marengo, Emilio; Fabbri, Debora; Medana, Claudio; Robotti, Elisa
File in questo prodotto:
File Dimensione Formato  
Photochemical & Photobiological Sciences_2023.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1887037
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact