: Potentially toxic elements (PTEs) in urban soil environments pose a noticeable risk to both ecosystem and human health; however, only a fraction of the elemental content is available for biota. To better know the potential risk of PTEs in the urban soil environment, geochemical fractionation, bioaccessibility, and potential bioavailability of four PTEs (Cd, Cu, Pb, and Zn) were investigated by the combined use of different methods. The results showed that a high non-residual chemical fraction is related to a high bioavailability of the selected elements. The ranges of labile concentration of Cu, Zn, Cd and Pb in all sampling sites measured by diffusive gradients in thin films (DGT) were 3.5-18.0, 14.2-26.5, 0.09-1.0, and 1.8-15.7 μg/L, respectively. The high non-residual contents pointed out a serious hazard to the urban environment. The bioaccessible concentrations in gastric and lung phases were closely positively correlated with DGT-measured content (r = 0.63-0.99, p < 0.05), suggesting the potential use of DGT for the prediction of PTEs risk to human health. Moreover, the correlation of DGT results with the soluble and reducible fractions of PTEs may allow DGT use for quick screenings of the PTEs fraction potentially mobilizable during flooding events in urban soil environments. Our study suggests that combing DGT, bioaccessibility and biogeochemical fractionation could provide a more accurate assessment of the urban environmental quality and be helpful for pollution control and urban planning.

Combining DGT with bioaccessibility methods as tool to estimate potential bioavailability and release of PTEs in the urban soil environment

Li, Yan
First
;
Ajmone-Marsan, Franco;Padoan, Elio
Last
2023-01-01

Abstract

: Potentially toxic elements (PTEs) in urban soil environments pose a noticeable risk to both ecosystem and human health; however, only a fraction of the elemental content is available for biota. To better know the potential risk of PTEs in the urban soil environment, geochemical fractionation, bioaccessibility, and potential bioavailability of four PTEs (Cd, Cu, Pb, and Zn) were investigated by the combined use of different methods. The results showed that a high non-residual chemical fraction is related to a high bioavailability of the selected elements. The ranges of labile concentration of Cu, Zn, Cd and Pb in all sampling sites measured by diffusive gradients in thin films (DGT) were 3.5-18.0, 14.2-26.5, 0.09-1.0, and 1.8-15.7 μg/L, respectively. The high non-residual contents pointed out a serious hazard to the urban environment. The bioaccessible concentrations in gastric and lung phases were closely positively correlated with DGT-measured content (r = 0.63-0.99, p < 0.05), suggesting the potential use of DGT for the prediction of PTEs risk to human health. Moreover, the correlation of DGT results with the soluble and reducible fractions of PTEs may allow DGT use for quick screenings of the PTEs fraction potentially mobilizable during flooding events in urban soil environments. Our study suggests that combing DGT, bioaccessibility and biogeochemical fractionation could provide a more accurate assessment of the urban environmental quality and be helpful for pollution control and urban planning.
2023
857
Pt 3
1
8
Bioaccessibility; Bioavailability; Diffusive gradients in thin films; Potentially toxic elements
Li, Yan; Ajmone-Marsan, Franco; Padoan, Elio
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0048969722066979-main.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.12 MB
Formato Adobe PDF
2.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Post-print version.pdf

Accesso aperto con embargo fino al 20/10/2024

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 810.15 kB
Formato Adobe PDF
810.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1887450
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact