An infant's brain effortlessly acquaints to a motion. Fetuses in the third trimester of pregnancy can also exhibit similar capacity, but further investigations on this matter are needed. Literature studies have assessed fetal response to visual stimulus experiments, but the known setups are reinforced with fixed illumination points and cannot be used to render generic motion visually. This work presents a system to overcome this limitation, i.e., provide dynamic motion as a visual stimulus for fetuses in the third trimester of pregnancy when they can process visual stimulus, and thus biological motion can be used for assessing fetal reactions. Our Transcutaneous Fetal Visual Stimulator (TCFVS) uses two high-resolution LED arrays (16 x 20), a reconfigurable SoC (Xilinx FPGA and ARM core), and intuitive software to provide flexible control and ease of operation analyzing fetal reactions in response to visual stimulation. The paper details the TCFVS hardware and software architecture and presents benchmarks on the software toolchain to import generic patterns or motion capture in the visual stimulation domain. Our ad-hoc pixel remapping technique, an important component to precisely visualize stimulations in our hardware, is necessary and results in higher performance with respect to conventional downscaling techniques. To provide the first validation of our device in view of a systematic study, we verified real fetus movements when stimulated with TCFVS.

A Transcutaneous Fetal Visual Stimulator

Cavallo A.;Pretti N.;
2022-01-01

Abstract

An infant's brain effortlessly acquaints to a motion. Fetuses in the third trimester of pregnancy can also exhibit similar capacity, but further investigations on this matter are needed. Literature studies have assessed fetal response to visual stimulus experiments, but the known setups are reinforced with fixed illumination points and cannot be used to render generic motion visually. This work presents a system to overcome this limitation, i.e., provide dynamic motion as a visual stimulus for fetuses in the third trimester of pregnancy when they can process visual stimulus, and thus biological motion can be used for assessing fetal reactions. Our Transcutaneous Fetal Visual Stimulator (TCFVS) uses two high-resolution LED arrays (16 x 20), a reconfigurable SoC (Xilinx FPGA and ARM core), and intuitive software to provide flexible control and ease of operation analyzing fetal reactions in response to visual stimulation. The paper details the TCFVS hardware and software architecture and presents benchmarks on the software toolchain to import generic patterns or motion capture in the visual stimulation domain. Our ad-hoc pixel remapping technique, an important component to precisely visualize stimulations in our hardware, is necessary and results in higher performance with respect to conventional downscaling techniques. To provide the first validation of our device in view of a systematic study, we verified real fetus movements when stimulated with TCFVS.
2022
10
45979
45996
Transcutaneous Fetal Visual Stimulator; fetal behavior; fetal eye movement; fetal head movement
Balasubramanian K.K.; Diotalevi F.; Lorini C.; Cavallo A.; Pretti N.; Paladini D.; Torazza D.; Becchio C.; Crepaldi M.
File in questo prodotto:
File Dimensione Formato  
A_Transcutaneous_Fetal_Visual_Stimulator.pdf

Accesso aperto

Descrizione: Articolo
Tipo di file: PDF EDITORIALE
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1887716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact