Increased urbanisation is leading to a rise in light pollution. Light pollution can disrupt the behaviour and physiology of animals resulting in increased mortality. However, animals may also benefit from artificial light sources, as these may aggregate prey or signal suitable environments. For example, spiders are commonly seen congregating around artificial light sources. Changes in selective pressures engendered by urban environments are driving changes in urban organisms, driving better adaptation to these environments. Here, we ask whether urban populations of the synanthropic spider Steatoda triangulosa show different responses to light compared to rural populations. Egg-sacs from urban and rural populations were collected and incubated in a common garden setting, and the emerging spiderlings tested for light preference. While rural spiderlings avoided light (37% built webs in the light), urban spiderlings were indifferent to it (49% built webs in the light). Reduced light avoidance may benefit spiders through increased prey capture, increased movement into suitable habitats, or due to a release from selection pressure from visually hunting predators which do not enter buildings.

Reduced light avoidance in spiders from populations in light-polluted urban environments

Tuni C
Last
2018-01-01

Abstract

Increased urbanisation is leading to a rise in light pollution. Light pollution can disrupt the behaviour and physiology of animals resulting in increased mortality. However, animals may also benefit from artificial light sources, as these may aggregate prey or signal suitable environments. For example, spiders are commonly seen congregating around artificial light sources. Changes in selective pressures engendered by urban environments are driving changes in urban organisms, driving better adaptation to these environments. Here, we ask whether urban populations of the synanthropic spider Steatoda triangulosa show different responses to light compared to rural populations. Egg-sacs from urban and rural populations were collected and incubated in a common garden setting, and the emerging spiderlings tested for light preference. While rural spiderlings avoided light (37% built webs in the light), urban spiderlings were indifferent to it (49% built webs in the light). Reduced light avoidance may benefit spiders through increased prey capture, increased movement into suitable habitats, or due to a release from selection pressure from visually hunting predators which do not enter buildings.
2018
105
11-12
64
68
Light pollution, Urban evolution, Anthropogenic selection, Urbanisation, Artificial light at night, Steatoda triangulosa
Czaczkes TJ; Bastidas-Urrutia AM; Ghislandi P; Tuni C
File in questo prodotto:
File Dimensione Formato  
2018_Czaczkes et al_SciNat.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1887743
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact