The isolation of high-quality plant genomic DNA is a major prerequisite in many plant biomolecular analyses involving nucleic acid amplification. Conventional plant cell lysis and DNA extraction methods involve lengthy sample preparation procedures that often require large amounts of sample and chemicals, high temperatures and multiple liquid transfer steps which can introduce challenges for high throughput applications. In this study, a simple, rapid, miniaturized ionic liquid (IL)-based extraction method was developed for the isolation of genomic DNA from milligram fragments of Arabidopsis thaliana plant tissue. This method is based on a modification of vortex-assisted matrix solid-phase dispersion (VA-MSPD) in which the trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide ([P6,6,6,14+][NTf2-]) IL or trihexyl(tetradecyl)phosphonium tris(hexafluoroacetylaceto)nickelate(II) ([P6,6,6,14+][Ni(hfacac)3-]) magnetic IL (MIL) was directly applied to treated plant tissue (∼1.5 mg) and dispersed in an agate mortar to facilitate plant cell lysis and DNA extraction, followed by recovery of the mixture with a qPCR compatible co-solvent. This study represents the first approach to use ILs and MILs in a MSPD procedure to facilitate plant cell lysis and DNA extraction. The DNA-enriched IL- and MIL-cosolvent mixtures were directly integrated into the qPCR buffer without inhibiting the reaction while also circumventing the need for additional purification steps prior to DNA amplification. Under optimum conditions, the IL and MIL yielded 2.87 ± 0.28 and 1.97 ± 0.59 ng of DNA/mg of plant tissue, respectively. Furthermore, the mild extraction conditions used in the method enabled plant DNA in IL- and MIL-cosolvent mixtures to be preserved from degradation at room temperature.
Isolation of DNA from plant tissues using a miniaturized matrix solid-phase dispersion approach featuring ionic liquid and magnetic ionic liquid solvents
Cagliero, Cecilia;
2023-01-01
Abstract
The isolation of high-quality plant genomic DNA is a major prerequisite in many plant biomolecular analyses involving nucleic acid amplification. Conventional plant cell lysis and DNA extraction methods involve lengthy sample preparation procedures that often require large amounts of sample and chemicals, high temperatures and multiple liquid transfer steps which can introduce challenges for high throughput applications. In this study, a simple, rapid, miniaturized ionic liquid (IL)-based extraction method was developed for the isolation of genomic DNA from milligram fragments of Arabidopsis thaliana plant tissue. This method is based on a modification of vortex-assisted matrix solid-phase dispersion (VA-MSPD) in which the trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfonyl)imide ([P6,6,6,14+][NTf2-]) IL or trihexyl(tetradecyl)phosphonium tris(hexafluoroacetylaceto)nickelate(II) ([P6,6,6,14+][Ni(hfacac)3-]) magnetic IL (MIL) was directly applied to treated plant tissue (∼1.5 mg) and dispersed in an agate mortar to facilitate plant cell lysis and DNA extraction, followed by recovery of the mixture with a qPCR compatible co-solvent. This study represents the first approach to use ILs and MILs in a MSPD procedure to facilitate plant cell lysis and DNA extraction. The DNA-enriched IL- and MIL-cosolvent mixtures were directly integrated into the qPCR buffer without inhibiting the reaction while also circumventing the need for additional purification steps prior to DNA amplification. Under optimum conditions, the IL and MIL yielded 2.87 ± 0.28 and 1.97 ± 0.59 ng of DNA/mg of plant tissue, respectively. Furthermore, the mild extraction conditions used in the method enabled plant DNA in IL- and MIL-cosolvent mixtures to be preserved from degradation at room temperature.File | Dimensione | Formato | |
---|---|---|---|
ACA_def.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
3.26 MB
Formato
Adobe PDF
|
3.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Posprint_Plant-IL-MSPD_ACA.pdf
Open Access dal 20/01/2024
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
3.12 MB
Formato
Adobe PDF
|
3.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.