Top-quark pair production at the LHC is directly sensitive to the gluon PDF at large x. While total cross-section data is already included in several PDF determinations, differential distributions are not, because the corresponding NNLO calculations have become available only recently. In this work we study the impact on the large-x gluon of top-quark pair differential distributions measured by ATLAS and CMS at root s = 8 TeV. Our analysis, performed in the NNPDF3.0 framework at NNLO accuracy, allows us to identify the optimal combination of LHC top-quark pair measurements that maximize the constraints on the gluon, as well as to assess the compatibility between ATLAS and CMS data. We find that differential distributions from top-quark pair production provide significant constraints on the large-x gluon, comparable to those obtained from inclusive jet production data, and thus should become an important ingredient for the next generation of global PDF fits.

Pinning down the large-x gluon with NNLO top-quark pair differential distributions

Emanuele R. Nocera;
2017-01-01

Abstract

Top-quark pair production at the LHC is directly sensitive to the gluon PDF at large x. While total cross-section data is already included in several PDF determinations, differential distributions are not, because the corresponding NNLO calculations have become available only recently. In this work we study the impact on the large-x gluon of top-quark pair differential distributions measured by ATLAS and CMS at root s = 8 TeV. Our analysis, performed in the NNPDF3.0 framework at NNLO accuracy, allows us to identify the optimal combination of LHC top-quark pair measurements that maximize the constraints on the gluon, as well as to assess the compatibility between ATLAS and CMS data. We find that differential distributions from top-quark pair production provide significant constraints on the large-x gluon, comparable to those obtained from inclusive jet production data, and thus should become an important ingredient for the next generation of global PDF fits.
2017
2017
4
1
50
https://link.springer.com/article/10.1007/JHEP04(2017)044
Michał Czakon; Nathan P. Hartland; Alexander Mitov; Emanuele R. Nocera; Juan Rojo
File in questo prodotto:
File Dimensione Formato  
JHEP04(2017)044.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1889674
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 46
social impact