We construct examples of compact homogeneous Riemannian manifolds admitting an invariant Bismut connection that is Ricci flat and non-flat, proving in this way that the generalized Alekseevsky-Kimelfeld theorem does not hold. The classification of compact homogeneous Bismut Ricci flat spaces in dimension 5 is also provided. Moreover, we investigate compact homogeneous spaces with non-trivial third Betti number, and we point out other possible ways to construct Bismut Ricci flat manifolds. Finally, since Bismut Ricci flat connections correspond to fixed points of the generalized Ricci flow, we discuss the stability of some of our examples under the flow.
Bismut Ricci flat manifolds with symmetries
Alberto Raffero
2023-01-01
Abstract
We construct examples of compact homogeneous Riemannian manifolds admitting an invariant Bismut connection that is Ricci flat and non-flat, proving in this way that the generalized Alekseevsky-Kimelfeld theorem does not hold. The classification of compact homogeneous Bismut Ricci flat spaces in dimension 5 is also provided. Moreover, we investigate compact homogeneous spaces with non-trivial third Betti number, and we point out other possible ways to construct Bismut Ricci flat manifolds. Finally, since Bismut Ricci flat connections correspond to fixed points of the generalized Ricci flow, we discuss the stability of some of our examples under the flow.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.