The predictive probabilities of the hierarchical Pitman-Yor process are approximated through Monte Carlo algorithms that exploits the Chinese Restaurant Franchise (CRF) representation. However, in order to simulate the posterior distribution of the hierarchical Pitman-Yor process, a set of auxiliary variables representing the arrangement of customers in tables of the CRF must be sampled through Markov chain Monte Carlo. This paper develops a perfect sampler for these latent variables employing ideas from the Propp-Wilson algorithm and evaluates its average running time by extensive simulations. The simulations reveal a significant dependence of running time on the parameters of the model, which exhibits sharp transitions. The algorithm is compared to simpler Gibbs sampling procedures, as well as a procedure for unbiased Monte Carlo estimation proposed by Glynn and Rhee. We illustrate its use with an example in microbial genomics studies.
Perfect Sampling of the Posterior in the Hierarchical Pitman-Yor Process
Favaro, S;
2022-01-01
Abstract
The predictive probabilities of the hierarchical Pitman-Yor process are approximated through Monte Carlo algorithms that exploits the Chinese Restaurant Franchise (CRF) representation. However, in order to simulate the posterior distribution of the hierarchical Pitman-Yor process, a set of auxiliary variables representing the arrangement of customers in tables of the CRF must be sampled through Markov chain Monte Carlo. This paper develops a perfect sampler for these latent variables employing ideas from the Propp-Wilson algorithm and evaluates its average running time by extensive simulations. The simulations reveal a significant dependence of running time on the parameters of the model, which exhibits sharp transitions. The algorithm is compared to simpler Gibbs sampling procedures, as well as a procedure for unbiased Monte Carlo estimation proposed by Glynn and Rhee. We illustrate its use with an example in microbial genomics studies.File | Dimensione | Formato | |
---|---|---|---|
21-BA1269-3.pdf
Accesso aperto
Dimensione
388.82 kB
Formato
Adobe PDF
|
388.82 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.