Atmospheric pollution poses a serious threat to environment and human health, and particulate matter (PM) is one of the major contributors. Biological effects induced by PM are investigated through in vitro assays using cells and by in vivo tests with laboratory model animals. However, also the estimation of adverse effects of pollutants, including airborne ones, on wild animals, such as insects, is an essential component of environmental risk assessment. Among insects, butterflies are sensitive to environmental changes and are important wild pollinators, so they might be suitable as environmental bioindicator species. The aim of this study was to evaluate the suitability of a wild cabbage butterfly species (Pieris brassicae) as a bioindicator organism to assess the genotoxic effects of PM10 collected in different sites. PM10 was collected from April to September in urban, suburban, and rural sites. P. brassicae larvae were reared in laboratory under controlled conditions on cabbage plants and exposed to PM10 organic extracts or dimethyl sulfoxide (controls) through vaporization. After exposure, larvae were dissected, and cells were used for comet assay. All PM extracts induced significant DNA damage in exposed larvae compared to controls and the extract collected in the most polluted site caused the highest genotoxic effect. In conclusion, the study suggested that butterflies, such as P. brassicae, could be applied as sensitive and promising bioindicators to investigate air quality and PM genotoxicity. Indeed, the use of these organisms allows the detection of genotoxic effects induced by PM sampled also in low-polluted areas.

Cabbage butterfly as bioindicator species to investigate the genotoxic effects of PM10

Macri, Manuela
Co-first
;
Gea, Marta
Co-first
;
Piccini, Irene;Dessi, Luca;Santovito, Alfredo;Bonelli, Simona;Schiliro, Tiziana
Co-last
;
Bonetta, Sara
Co-last
2023-01-01

Abstract

Atmospheric pollution poses a serious threat to environment and human health, and particulate matter (PM) is one of the major contributors. Biological effects induced by PM are investigated through in vitro assays using cells and by in vivo tests with laboratory model animals. However, also the estimation of adverse effects of pollutants, including airborne ones, on wild animals, such as insects, is an essential component of environmental risk assessment. Among insects, butterflies are sensitive to environmental changes and are important wild pollinators, so they might be suitable as environmental bioindicator species. The aim of this study was to evaluate the suitability of a wild cabbage butterfly species (Pieris brassicae) as a bioindicator organism to assess the genotoxic effects of PM10 collected in different sites. PM10 was collected from April to September in urban, suburban, and rural sites. P. brassicae larvae were reared in laboratory under controlled conditions on cabbage plants and exposed to PM10 organic extracts or dimethyl sulfoxide (controls) through vaporization. After exposure, larvae were dissected, and cells were used for comet assay. All PM extracts induced significant DNA damage in exposed larvae compared to controls and the extract collected in the most polluted site caused the highest genotoxic effect. In conclusion, the study suggested that butterflies, such as P. brassicae, could be applied as sensitive and promising bioindicators to investigate air quality and PM genotoxicity. Indeed, the use of these organisms allows the detection of genotoxic effects induced by PM sampled also in low-polluted areas.
2023
1
10
Air pollution; Bioindicator species; Cabbage butterfly; Caterpillars; Comet assay; Particulate matter
Macri, Manuela; Gea, Marta; Piccini, Irene; Dessi, Luca; Santovito, Alfredo; Bonelli, Simona; Schiliro, Tiziana; Bonetta, Sara
File in questo prodotto:
File Dimensione Formato  
Macri et al. 2023.pdf

Accesso riservato

Descrizione: Articolo
Tipo di file: PDF EDITORIALE
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ESPR-D-22-20347_def.pdf

Accesso aperto

Descrizione: Pre-print
Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1891543
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact