We theoretically investigated the effect of mixed Frenkel (F) and charge transfer (CT) states on the spectral properties of perylene bisimide (PBI) derivatives, focusing on the role of strong electron-phonon interactions. The model consists of a four-level system described by the Holstein Hamiltonian coupled to independent local heat-baths on each site, described by Brownian spectral distribution functions. We employ the reduced hierarchical equations of motion (HEOM) approach to calculate the time evolution of the system and compare it to the pure F exciton cases. We compute the absorption and time-gated fluorescence (TGF) spectra for different exciton transfer integrals and F-CT bandgap conditions. The coherence length of excitons (N-coh) is evaluated employing two different definitions. We observe the presence of an excited hot state peak whose intensity is associated with the delocalization of the excited species and ultrafast dynamics that are solely dependent on the frequency of the local bath. The results indicate that the inclusion of CT states promotes localization of the excitons, which is manifested in a decrease in the intensity of the hot state peak and the 0-1 peak and an increase in the intensity of the 0-0 emission peak in the TGF spectrum, leading to a decrease of N-coh. Published under an exclusive license by AIP Publishing.

Effect of mixed Frenkel and charge transfer states in time-gated fluorescence spectra of perylene bisimides H-aggregates: Hierarchical equations of motion approach

Borrelli, Raffaele
Co-first
;
2022-01-01

Abstract

We theoretically investigated the effect of mixed Frenkel (F) and charge transfer (CT) states on the spectral properties of perylene bisimide (PBI) derivatives, focusing on the role of strong electron-phonon interactions. The model consists of a four-level system described by the Holstein Hamiltonian coupled to independent local heat-baths on each site, described by Brownian spectral distribution functions. We employ the reduced hierarchical equations of motion (HEOM) approach to calculate the time evolution of the system and compare it to the pure F exciton cases. We compute the absorption and time-gated fluorescence (TGF) spectra for different exciton transfer integrals and F-CT bandgap conditions. The coherence length of excitons (N-coh) is evaluated employing two different definitions. We observe the presence of an excited hot state peak whose intensity is associated with the delocalization of the excited species and ultrafast dynamics that are solely dependent on the frequency of the local bath. The results indicate that the inclusion of CT states promotes localization of the excitons, which is manifested in a decrease in the intensity of the hot state peak and the 0-1 peak and an increase in the intensity of the 0-0 emission peak in the TGF spectrum, leading to a decrease of N-coh. Published under an exclusive license by AIP Publishing.
2022
157
8
084103
084114
Cainelli, Mauro; Borrelli, Raffaele; Tanimura, Yoshitaka
File in questo prodotto:
File Dimensione Formato  
Cainelli et al. - 2022 - Effect of mixed Frenkel and charge transfer states.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 3.41 MB
Formato Adobe PDF
3.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PBI_paper_05_21.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 525.33 kB
Formato Adobe PDF
525.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1891651
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact