In this paper, we present a Bluetooth Low Energy (BLE) based indoor positioning system developed for monitoring the daily living pattern of old people (e.g. people living with dementia) or individuals with disabilities. The proposed sensing system is composed of multiple sensors that are installed in different locations in a home environment. The specific location of the user in the building has been pre-recorded into the proposed sensing system that captures the raw Received Signal Strength Indicator (RSSI) from the BLE beacon that is attached on the user. Two methods are proposed to determine the indoor location and the tracking of the users: a trilateration-based method and fingerprinting-based method. Experiments have been carried out in different home environments to verify the proposed system and methods. The results show that our system is able to accurately track the user location in home environments and can track the living patterns of the user which, in turn, may be used to infer the health status of the user. Our results also show that the positions of the BLE beacons on the user and different quality of BLE beacons do not affect the tracking accuracy.
A Low Cost Indoor Positioning System Using Bluetooth Low Energy
Fabio Ciravegna;
2020-01-01
Abstract
In this paper, we present a Bluetooth Low Energy (BLE) based indoor positioning system developed for monitoring the daily living pattern of old people (e.g. people living with dementia) or individuals with disabilities. The proposed sensing system is composed of multiple sensors that are installed in different locations in a home environment. The specific location of the user in the building has been pre-recorded into the proposed sensing system that captures the raw Received Signal Strength Indicator (RSSI) from the BLE beacon that is attached on the user. Two methods are proposed to determine the indoor location and the tracking of the users: a trilateration-based method and fingerprinting-based method. Experiments have been carried out in different home environments to verify the proposed system and methods. The results show that our system is able to accurately track the user location in home environments and can track the living patterns of the user which, in turn, may be used to infer the health status of the user. Our results also show that the positions of the BLE beacons on the user and different quality of BLE beacons do not affect the tracking accuracy.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.