Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300-600 degrees C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic "nanofurnaces" capable of reaching temperatures above 600 degrees C under moderately concentrated solar irradiation (similar to 20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10(-21 )L) volumetric precision, catalyzing C-C bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h(-1) m(-)2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.

Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis

Naldoni, Alberto
First
;
2020-01-01

Abstract

Most of existing solar thermal technologies require highly concentrated solar power to operate in the temperature range 300-600 degrees C. Here, thin films of refractory plasmonic TiN cylindrical nanocavities manufactured via flexible and scalable process are presented. The fabricated TiN films show polarization-insensitive 95% broadband absorption in the visible and near-infrared spectral ranges and act as plasmonic "nanofurnaces" capable of reaching temperatures above 600 degrees C under moderately concentrated solar irradiation (similar to 20 Suns). The demonstrated structures can be used to control nanometer-scale chemistry with zeptoliter (10(-21 )L) volumetric precision, catalyzing C-C bond formation and melting inorganic deposits. Also shown is the possibility to perform solar thermal CO oxidation at rates of 16 mol h(-1) m(-)2 and with a solar-to-heat thermoplasmonic efficiency of 63%. Access to scalable, cost-effective refractory plasmonic nanofurnaces opens the way to the development of modular solar thermal devices for sustainable catalytic processes.
2020
20
5
3663
3672
nanocavity; plasmonics; solar chemicals; solar-thermal; sustainable catalysis; titanium nitride
Naldoni, Alberto; Kudyshev, Zhaxylyk A; Mascaretti, Luca; Sarmah, Smritakshi P; Rej, Sourav; Froning, Jens P; Tomanec, Ondřej; Yoo, Jeong Eun; Wang, D...espandi
File in questo prodotto:
File Dimensione Formato  
(2020) Solar Thermoplasmonic Nanofurnace for High-Temperature heterogeneous catalysis.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 9.58 MB
Formato Adobe PDF
9.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
MS_revised.docx

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 5.43 MB
Formato Microsoft Word XML
5.43 MB Microsoft Word XML   Visualizza/Apri   Richiedi una copia
MS_revised.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1892837
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 59
social impact