Photoelectrochemical (PEC) water splitting is a promising approach for producing hydrogen without greenhouse gas emissions. Despite decades of unceasing efforts, the efficiency of PEC devices based on earth-abundant semiconductors is still limited by their low light absorption, low charge mobility, high charge-carrier recombination, and reduced diffusion length. Plasmonics has recently emerged as an effective approach for overcoming these limitations, although a full understanding of the involved physical mechanisms remains elusive. Here, the reported plasmonic effects are outlined, such as resonant energy transfer, scattering, hot electron injection, guided modes, and photonic effects, as well as the less investigated catalytic and thermal effects used in PEC water splitting. In each section, the fundamentals are reviewed and the most representative examples are discussed, illustrating possible future developments for achieving improved efficiency of plasmonic photoelectrodes.

Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage

Naldoni, Alberto
Last
2019-01-01

Abstract

Photoelectrochemical (PEC) water splitting is a promising approach for producing hydrogen without greenhouse gas emissions. Despite decades of unceasing efforts, the efficiency of PEC devices based on earth-abundant semiconductors is still limited by their low light absorption, low charge mobility, high charge-carrier recombination, and reduced diffusion length. Plasmonics has recently emerged as an effective approach for overcoming these limitations, although a full understanding of the involved physical mechanisms remains elusive. Here, the reported plasmonic effects are outlined, such as resonant energy transfer, scattering, hot electron injection, guided modes, and photonic effects, as well as the less investigated catalytic and thermal effects used in PEC water splitting. In each section, the fundamentals are reviewed and the most representative examples are discussed, illustrating possible future developments for achieving improved efficiency of plasmonic photoelectrodes.
2019
31
31
1805513
1805535
hydrogen production; photoelectrochemistry; photonic nanostructures; surface plasmons; water splitting
Mascaretti, Luca; Dutta, Aveek; Kment, Štěpán; Shalaev, Vladimir M; Boltasseva, Alexandra; Zbořil, Radek; Naldoni, Alberto...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1892848
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 194
  • ???jsp.display-item.citation.isi??? 188
social impact