Purpose This study aimed at investigating the mechanisms underlying the oxygenation response to proning and recruitment maneuvers in coronavirus disease 2019 (COVID-19) pneumonia. Methods Twenty-five patients with COVID-19 pneumonia, at variable times since admission (from 1 to 3 weeks), underwent computed tomography (CT) lung scans, gas-exchange and lung-mechanics measurement in supine and prone positions at 5 cmH(2)O and during recruiting maneuver (supine, 35 cmH(2)O). Within the non-aerated tissue, we differentiated the atelectatic and consolidated tissue (recruitable and non-recruitable at 35 cmH(2)O of airway pressure). Positive/negative response to proning/recruitment was defined as increase/decrease of PaO2/FiO(2). Apparent perfusion ratio was computed as venous admixture/non aerated tissue fraction. Results The average values of venous admixture and PaO2/FiO(2) ratio were similar in supine-5 and prone-5. However, the PaO2/FiO(2) changes (increasing in 65% of the patients and decreasing in 35%, from supine to prone) correlated with the balance between resolution of dorsal atelectasis and formation of ventral atelectasis (p = 0.002). Dorsal consolidated tissue determined this balance, being inversely related with dorsal recruitment (p = 0.012). From supine-5 to supine-35, the apparent perfusion ratio increased from 1.38 +/- 0.71 to 2.15 +/- 1.15 (p = 0.004) while PaO2/FiO(2) ratio increased in 52% and decreased in 48% of patients. Non-responders had consolidated tissue fraction of 0.27 +/- 0.1 vs. 0.18 +/- 0.1 in the responding cohort (p = 0.04). Consolidated tissue, PaCO2 and respiratory system elastance were higher in patients assessed late (all p < 0.05), suggesting, all together, "fibrotic-like" changes of the lung over time. Conclusion The amount of consolidated tissue was higher in patients assessed during the third week and determined the oxygenation responses following pronation and recruitment maneuvers.

Mechanisms of oxygenation responses to proning and recruitment in COVID-19 pneumonia

Steinberg I.;Collino F.;
2022-01-01

Abstract

Purpose This study aimed at investigating the mechanisms underlying the oxygenation response to proning and recruitment maneuvers in coronavirus disease 2019 (COVID-19) pneumonia. Methods Twenty-five patients with COVID-19 pneumonia, at variable times since admission (from 1 to 3 weeks), underwent computed tomography (CT) lung scans, gas-exchange and lung-mechanics measurement in supine and prone positions at 5 cmH(2)O and during recruiting maneuver (supine, 35 cmH(2)O). Within the non-aerated tissue, we differentiated the atelectatic and consolidated tissue (recruitable and non-recruitable at 35 cmH(2)O of airway pressure). Positive/negative response to proning/recruitment was defined as increase/decrease of PaO2/FiO(2). Apparent perfusion ratio was computed as venous admixture/non aerated tissue fraction. Results The average values of venous admixture and PaO2/FiO(2) ratio were similar in supine-5 and prone-5. However, the PaO2/FiO(2) changes (increasing in 65% of the patients and decreasing in 35%, from supine to prone) correlated with the balance between resolution of dorsal atelectasis and formation of ventral atelectasis (p = 0.002). Dorsal consolidated tissue determined this balance, being inversely related with dorsal recruitment (p = 0.012). From supine-5 to supine-35, the apparent perfusion ratio increased from 1.38 +/- 0.71 to 2.15 +/- 1.15 (p = 0.004) while PaO2/FiO(2) ratio increased in 52% and decreased in 48% of patients. Non-responders had consolidated tissue fraction of 0.27 +/- 0.1 vs. 0.18 +/- 0.1 in the responding cohort (p = 0.04). Consolidated tissue, PaCO2 and respiratory system elastance were higher in patients assessed late (all p < 0.05), suggesting, all together, "fibrotic-like" changes of the lung over time. Conclusion The amount of consolidated tissue was higher in patients assessed during the third week and determined the oxygenation responses following pronation and recruitment maneuvers.
2022
48
1
56
66
ARDS; COVID-19; Lung recruitment; Mechanical ventilation; Prone position
Rossi S.; Palumbo M.M.; Sverzellati N.; Busana M.; Malchiodi L.; Bresciani P.; Ceccarelli P.; Sani E.; Romitti F.; Bonifazi M.; Gattarello S.; Steinbe...espandi
File in questo prodotto:
File Dimensione Formato  
134_2021_Article_6562.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 3.14 MB
Formato Adobe PDF
3.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1894947
Citazioni
  • ???jsp.display-item.citation.pmc??? 35
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 42
social impact