Grape seed maturation involves the gradual oxidation of tannins, decreasing excessive bitterness and astringency in wine. In cool climates, this process is limited by the short growing season, affecting wine quality. A "freeze-thaw" treatment on seeds of red vinifera cultivars at veraison and harvest was used to evaluate the effect of oxidation and extractability on seed phenolic fractions. Freezing increased the extraction of total phenolics and o-diphenols quantified from fractionation (fraction 1, vacuolar tannins; fraction 2, hydrogen bonded tannins; fraction 3, covalently bonded tannins), especially at harvest. Despite this, colorimetry, microscopy, oxidation reactivity index (ORI), and correlations between the color index and fractions indicated that freezing disrupted vacuole integrity, enhancing oxidation in the seed coat. In conclusion, vacuolar tannins (which are the main seed phenolics extracted during fermentation) were highly correlated with seed color change, potentially providing information for winemaking in cool climate regions.

Increase in seed tannin extractability and oxidation using a freeze-thaw treatment in cool-climate grown red (Vitis vinifera L.) cultivars

Forte A.;Peterlunger E.;Sabbatini P.
2020-01-01

Abstract

Grape seed maturation involves the gradual oxidation of tannins, decreasing excessive bitterness and astringency in wine. In cool climates, this process is limited by the short growing season, affecting wine quality. A "freeze-thaw" treatment on seeds of red vinifera cultivars at veraison and harvest was used to evaluate the effect of oxidation and extractability on seed phenolic fractions. Freezing increased the extraction of total phenolics and o-diphenols quantified from fractionation (fraction 1, vacuolar tannins; fraction 2, hydrogen bonded tannins; fraction 3, covalently bonded tannins), especially at harvest. Despite this, colorimetry, microscopy, oxidation reactivity index (ORI), and correlations between the color index and fractions indicated that freezing disrupted vacuole integrity, enhancing oxidation in the seed coat. In conclusion, vacuolar tannins (which are the main seed phenolics extracted during fermentation) were highly correlated with seed color change, potentially providing information for winemaking in cool climate regions.
2020
308
125571
125581
Artificial ripening; Color; Grape; Phenolic; Suboptimal climate
VanderWeide J.; Forte A.; Peterlunger E.; Sivilotti P.; Medina-Meza I.G.; Falchi R.; Rustioni L.; Sabbatini P.
File in questo prodotto:
File Dimensione Formato  
Josh_2020.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1894976
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact