Quasi-classical approximation in the intrinsic description of the vortex filament dynamics is discussed. Within this approximation, the governing equations are given by elliptic system of quasi-linear partial differential equations of the first order. Dispersionless Da Rios system and dispersionless Hirota equation are among them. They describe motion of vortex filament with slow-varying curvature and torsion without or with axial flow. Gradient catastrophe for governing equations is studied. It is shown that geometrically this catastrophe manifests as a fast oscillation of a filament curve around the rectifying plane which resembles the flutter of airfoils. Analytically, it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painlevé I equation. © 2012 by the Massachusetts Institute of Technology.
Quasi-classical approximation in vortex filament dynamics. Integrable systems, gradient catastrophe and flutter
ORTENZI, GIOVANNI
2012-01-01
Abstract
Quasi-classical approximation in the intrinsic description of the vortex filament dynamics is discussed. Within this approximation, the governing equations are given by elliptic system of quasi-linear partial differential equations of the first order. Dispersionless Da Rios system and dispersionless Hirota equation are among them. They describe motion of vortex filament with slow-varying curvature and torsion without or with axial flow. Gradient catastrophe for governing equations is studied. It is shown that geometrically this catastrophe manifests as a fast oscillation of a filament curve around the rectifying plane which resembles the flutter of airfoils. Analytically, it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painlevé I equation. © 2012 by the Massachusetts Institute of Technology.File | Dimensione | Formato | |
---|---|---|---|
SAPM-KO.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
742.88 kB
Formato
Adobe PDF
|
742.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.