V2O5-WO3/TiO2 is commercial catalyst for controlling NOx emissions from municipal solid waste incineration by NH3 Selective Catalytic Reduction (NH3-SCR). However, the flue gas contains a large amount of zinc compounds, which would lead to the deactivation of the catalyst. Therefore, in this work we studied the effect of different zinc species (ZnSO4, ZnO and ZnCl2) on a V2O5-WO3/TiO2 catalyst, investigating the deactivation mechanism. The different compounds negatively affected the activity in the order ZnCl2 >ZnO>ZnSO4, indicating an important influence of the anions. The characterization results points to the evidence that Zn2+ would interact with the active V-OH and O–– V structure, reducing the content of active Brønsted acid sites and influencing the V5+⇄V4+ redox cycle, as well as inhibiting the activation of NH3. Cl- would interact with V-OH, possibly forming V-Cl and also suppress the formation and mobility of surface adsorbed oxygen, which further exacerbates the negative effect. On the other hand, SO42- would weaken the poisoning effect of Zn2+ by a strong anion/cation interaction and likely form V-O-SO3OH by reaction with V-OH, which is proposed to be an active Brønsted acid site able to active NH3 in the NH3-SCR reaction. Finally, the introduction of Zn2+ increased the adsorption of NOx species to form a stable and inactive nitro species, the formation of which is inhibited by the presence of SO42-.

Insights into the poisoning mechanisms of zinc compounds on V2O5-WO3/TiO2 catalyst for NH3-SCR: Effect of the anion species

Cao, Jun;Nannuzzi, Chiara;Lagostina, Valeria;Paganini, Maria Cristina;Berlier, Gloria
2023-01-01

Abstract

V2O5-WO3/TiO2 is commercial catalyst for controlling NOx emissions from municipal solid waste incineration by NH3 Selective Catalytic Reduction (NH3-SCR). However, the flue gas contains a large amount of zinc compounds, which would lead to the deactivation of the catalyst. Therefore, in this work we studied the effect of different zinc species (ZnSO4, ZnO and ZnCl2) on a V2O5-WO3/TiO2 catalyst, investigating the deactivation mechanism. The different compounds negatively affected the activity in the order ZnCl2 >ZnO>ZnSO4, indicating an important influence of the anions. The characterization results points to the evidence that Zn2+ would interact with the active V-OH and O–– V structure, reducing the content of active Brønsted acid sites and influencing the V5+⇄V4+ redox cycle, as well as inhibiting the activation of NH3. Cl- would interact with V-OH, possibly forming V-Cl and also suppress the formation and mobility of surface adsorbed oxygen, which further exacerbates the negative effect. On the other hand, SO42- would weaken the poisoning effect of Zn2+ by a strong anion/cation interaction and likely form V-O-SO3OH by reaction with V-OH, which is proposed to be an active Brønsted acid site able to active NH3 in the NH3-SCR reaction. Finally, the introduction of Zn2+ increased the adsorption of NOx species to form a stable and inactive nitro species, the formation of which is inhibited by the presence of SO42-.
2023
11
3
109716
109725
https://www.sciencedirect.com/science/article/pii/S2213343723004554?dgcid=coauthor
V2O5 -WO3/TiO2, Zinc salts, Poisoning mechanism, Structure-activity relationship
Cao, Jun; Nannuzzi, Chiara; Lagostina, Valeria; Paganini, Maria Cristina; Liu, Weizao; Wu, Hongli; Gao, Yuxiang; Liu, Qingcai; Berlier, Gloria...espandi
File in questo prodotto:
File Dimensione Formato  
Jun J Env Chem Eng 23.pdf

Accesso riservato

Descrizione: Articolo
Tipo di file: PDF EDITORIALE
Dimensione 5.16 MB
Formato Adobe PDF
5.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
OA.pdf

Accesso aperto con embargo fino al 17/03/2025

Descrizione: postprint
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.33 MB
Formato Adobe PDF
2.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1896213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact