Cytochromes P450 are ancient enzymes diffused in organisms belonging to all kingdoms of life, including viruses, with the largest number of P450 genes found in plants. The functional characterization of cytochromes P450 has been extensively investigated in mammals, where these enzymes are involved in the metabolism of drugs and in the detoxification of pollutants and toxic chemicals. The aim of this work is to present an overview of the often disregarded role of the cytochrome P450 enzymes in mediating the interaction between plants and microorganisms. Quite recently, several research groups have started to investigate the role of P450 enzymes in the interactions between plants and (micro)organisms, focusing on the holobiont Vitis vinifera. Grapevines live in close association with large numbers of microorganisms and interact with each other, regulating several vine physiological functions, from biotic and abiotic stress tolerance to fruit quality at harvest.

Role of Cytochrome P450 Enzyme in Plant Microorganisms’ Communication: A Focus on Grapevine

Minerdi D.
First
;
Savoi S.;Sabbatini P.
Last
2023-01-01

Abstract

Cytochromes P450 are ancient enzymes diffused in organisms belonging to all kingdoms of life, including viruses, with the largest number of P450 genes found in plants. The functional characterization of cytochromes P450 has been extensively investigated in mammals, where these enzymes are involved in the metabolism of drugs and in the detoxification of pollutants and toxic chemicals. The aim of this work is to present an overview of the often disregarded role of the cytochrome P450 enzymes in mediating the interaction between plants and microorganisms. Quite recently, several research groups have started to investigate the role of P450 enzymes in the interactions between plants and (micro)organisms, focusing on the holobiont Vitis vinifera. Grapevines live in close association with large numbers of microorganisms and interact with each other, regulating several vine physiological functions, from biotic and abiotic stress tolerance to fruit quality at harvest.
2023
24
5
4695
4707
cypome; cytochrome P450 enzyme; grapevine; interactions between plants and microorganisms; plants; Vitis vinifera
Minerdi D.; Savoi S.; Sabbatini P.
File in questo prodotto:
File Dimensione Formato  
15_Minerdi_2023_InternationalJournalofMolecularSciences.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1896376
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact