Consider the class of optimal partition problems with long range interactionsinf {Sigma(k)(i=1) lambda(1)(omega(i)) : (omega(1), . . . , omega(k)) is an element of P-r (Omega)},where lambda(1)(.) denotes the first Dirichlet eigenvalue, and P-r (Omega) is the set of open k-partitions of Omega whose elements are at distance at least r: dist(omega(i), omega(j)) >= r for every i not equal j. In this paper we prove optimal uniform bounds (as r -> 0(+)) in Lip-norm for the associated L-2-normalized eigenfunctions, connecting in particular the nonlocal case r > 0 with the local one r -> 0(+). The proof uses new pointwise estimates for eigenfunctions, a one-phase Alt-Caffarelli-Friedman and the Caffarelli-Jerison-Kenig monotonicity formulas, combined with elliptic and energy estimates. Our result extends to other contexts, such as singularly perturbed harmonic maps with distance constraints.

Free boundary problems with long-range interactions: uniform Lipschitz estimates in the radius

Soave, N;
2023-01-01

Abstract

Consider the class of optimal partition problems with long range interactionsinf {Sigma(k)(i=1) lambda(1)(omega(i)) : (omega(1), . . . , omega(k)) is an element of P-r (Omega)},where lambda(1)(.) denotes the first Dirichlet eigenvalue, and P-r (Omega) is the set of open k-partitions of Omega whose elements are at distance at least r: dist(omega(i), omega(j)) >= r for every i not equal j. In this paper we prove optimal uniform bounds (as r -> 0(+)) in Lip-norm for the associated L-2-normalized eigenfunctions, connecting in particular the nonlocal case r > 0 with the local one r -> 0(+). The proof uses new pointwise estimates for eigenfunctions, a one-phase Alt-Caffarelli-Friedman and the Caffarelli-Jerison-Kenig monotonicity formulas, combined with elliptic and energy estimates. Our result extends to other contexts, such as singularly perturbed harmonic maps with distance constraints.
2023
386
551
585
https://arxiv.org/pdf/2106.03661.pdf
Dirichlet integral; Harmonic functions; Laplacian eigenvalues; Lipschitz estimates; Long range interactions; Optimal partition problems; Optimal regularity; Segregation phenomena
Soave, N; Tavares, H; Zilio, A
File in questo prodotto:
File Dimensione Formato  
SoaTavZil MathAnn 2022.pdf

Accesso riservato

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 324.33 kB
Formato Adobe PDF
324.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
SoaTavZil MathAnn 2023.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 473.62 kB
Formato Adobe PDF
473.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1896521
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact