Ischemic heart failure is due to irreversible loss of cardiomyocytes. Preclinical studies showed that human pluripotent stem cell (hPSC)-derived cardiomyocytes could remuscularize infarcted hearts and improve cardiac function. However, these cardiomyocytes remained immature. Incorporating hPSC-derived epicardial cells has been shown to improve cardiomyocyte maturation, but the exact mechanisms are unknown. We posited epicardial fibronectin (FN1) as a mediator of epicardial-cardiomyocyte crosstalk and assessed its role in driving hPSC-derived cardiomyocyte maturation in 3D-engineered heart tissues (3D-EHTs). We found that the loss of FN1 with peptide inhibition F(pUR4), CRISPR-Cas9-mediated FN1 knockout, or tetracycline-inducible FN1 knockdown in 3D-EHTs resulted in immature cardiomyocytes with decreased contractile function, and inefficient Ca2+ handling. Conversely, when we supplemented 3D-EHTs with recombinant human FN1, we could recover hPSC-derived cardiomyocyte maturation. Finally, our RNA-sequencing analyses found FN1 within a wider paracrine network of epicardial-cardiomyocyte crosstalk, thus solidifying FN1 as a key driver of hPSC-derived cardiomyocyte maturation in 3D-EHTs.

Epicardially secreted fibronectin drives cardiomyocyte maturation in 3D-engineered heart tissues

Bertero, Alessandro;
2023-01-01

Abstract

Ischemic heart failure is due to irreversible loss of cardiomyocytes. Preclinical studies showed that human pluripotent stem cell (hPSC)-derived cardiomyocytes could remuscularize infarcted hearts and improve cardiac function. However, these cardiomyocytes remained immature. Incorporating hPSC-derived epicardial cells has been shown to improve cardiomyocyte maturation, but the exact mechanisms are unknown. We posited epicardial fibronectin (FN1) as a mediator of epicardial-cardiomyocyte crosstalk and assessed its role in driving hPSC-derived cardiomyocyte maturation in 3D-engineered heart tissues (3D-EHTs). We found that the loss of FN1 with peptide inhibition F(pUR4), CRISPR-Cas9-mediated FN1 knockout, or tetracycline-inducible FN1 knockdown in 3D-EHTs resulted in immature cardiomyocytes with decreased contractile function, and inefficient Ca2+ handling. Conversely, when we supplemented 3D-EHTs with recombinant human FN1, we could recover hPSC-derived cardiomyocyte maturation. Finally, our RNA-sequencing analyses found FN1 within a wider paracrine network of epicardial-cardiomyocyte crosstalk, thus solidifying FN1 as a key driver of hPSC-derived cardiomyocyte maturation in 3D-EHTs.
2023
18
4
936
951
cardiomyocytes; engineered heart tissues; epicardium; fibronectin; maturation
Ong, Lay Ping; Bargehr, Johannes; Knight-Schrijver, Vincent R; Lee, Jonathan; Colzani, Maria; Bayraktar, Semih; Bernard, William G; Marchiano, Silvia; Bertero, Alessandro; Murry, Charles E; Gambardella, Laure; Sinha, Sanjay
File in questo prodotto:
File Dimensione Formato  
Ong 2023 SCR_compressed.pdf

Accesso aperto

Descrizione: Manuscript
Tipo di file: PDF EDITORIALE
Dimensione 5.34 MB
Formato Adobe PDF
5.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1898773
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact