We study nonparametric Bayesian models for reversible multidimensional diffusions with periodic drift. For continuous observation paths, reversibility is exploited to prove a general posterior contraction rate theorem for the drift gradient vector field under approximation-theoretic conditions on the induced prior for the invariant measure. The general theorem is applied to Gaussian priors and p-exponential priors, which are shown to converge to the truth at the optimal nonparametric rate over Sobolev smoothness classes in any dimension.

Nonparametric Bayesian inference for reversible multidimensional diffusions

Giordano Matteo
Co-first
;
2022-01-01

Abstract

We study nonparametric Bayesian models for reversible multidimensional diffusions with periodic drift. For continuous observation paths, reversibility is exploited to prove a general posterior contraction rate theorem for the drift gradient vector field under approximation-theoretic conditions on the induced prior for the invariant measure. The general theorem is applied to Gaussian priors and p-exponential priors, which are shown to converge to the truth at the optimal nonparametric rate over Sobolev smoothness classes in any dimension.
2022
50
5
2872
2898
https://projecteuclid.org/journals/annals-of-statistics/volume-50/issue-5/Nonparametric-Bayesian-inference-for-reversible-multidimensional-diffusions/10.1214/22-AOS2213.short
Bayesian nonparametrics , Gaussian processes , Laplace prior , multidimensional diffusions , reversibility
Giordano Matteo; Ray Kolyan
File in questo prodotto:
File Dimensione Formato  
arXiv Version.pdf

Accesso aperto

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 553.57 kB
Formato Adobe PDF
553.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1901472
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact