Aryl aldehydes and acids are important industrial intermediates, but their synthesis from the corresponding alcohols often requires the use of high temperatures and harmful solvents and oxidant agents. Heterogeneous photocatalysis represents an interesting option for the partial oxidation of alcohols to aldehydes at room tem-perature using water as solvent. In this work, the partial photocatalytic oxidation of 2-hydroxybenzyl alcohol (salicyl alcohol) and 4-hydroxybenzyl alcohol to the corresponding aldehydes and acids has been compared, under environmental-friendly conditions, employing TiO2 P25 as photocatalyst in water. The selectivity to the corresponding aldehydes and acids, under the same experimental conditions, was higher for 4-hydroxybenzyl alcohol than for 2-hydroxybenzyl alcohol owing to its greater stability with respect to oxidant attacks and to the lower adsorption of 4-hydroxybelzaldehyde and 4-hydroxybenzoic acid on the photocatalyst surface. The processes occurring at the oxide surface during the reaction were monitored at the molecular level by FT-IR spectroscopy under in situ UV irradiation to get deeper insights into the different behavior of the two alcohols.
Surface processes in selective photocatalytic oxidation of hydroxybenzyl alcohols by TiO2 P25
Mino, L
Last
2023-01-01
Abstract
Aryl aldehydes and acids are important industrial intermediates, but their synthesis from the corresponding alcohols often requires the use of high temperatures and harmful solvents and oxidant agents. Heterogeneous photocatalysis represents an interesting option for the partial oxidation of alcohols to aldehydes at room tem-perature using water as solvent. In this work, the partial photocatalytic oxidation of 2-hydroxybenzyl alcohol (salicyl alcohol) and 4-hydroxybenzyl alcohol to the corresponding aldehydes and acids has been compared, under environmental-friendly conditions, employing TiO2 P25 as photocatalyst in water. The selectivity to the corresponding aldehydes and acids, under the same experimental conditions, was higher for 4-hydroxybenzyl alcohol than for 2-hydroxybenzyl alcohol owing to its greater stability with respect to oxidant attacks and to the lower adsorption of 4-hydroxybelzaldehyde and 4-hydroxybenzoic acid on the photocatalyst surface. The processes occurring at the oxide surface during the reaction were monitored at the molecular level by FT-IR spectroscopy under in situ UV irradiation to get deeper insights into the different behavior of the two alcohols.File | Dimensione | Formato | |
---|---|---|---|
Surface processes in selective photocatalytic oxidation of hydroxybenzyl alcohols by TiO2 P25.pdf
Accesso riservato
Descrizione: PDF editoriale
Tipo di file:
PDF EDITORIALE
Dimensione
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Cat Tod_OA.pdf
Accesso aperto con embargo fino al 01/01/2025
Descrizione: Versione Open Access
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
652.29 kB
Formato
Adobe PDF
|
652.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.