The DNA damage response (DDR) and epithelial-to-mesenchymal transition (EMT) are two crucial cellular programs in cancer biology. While the DDR orchestrates cell-cycle progression, DNA repair, and cell death, EMT promotes invasiveness, cellular plasticity, and intratumor heterogeneity. Therapeutic targeting of EMT transcription factors, such as ZEB1, remains challenging, but tumor-promoting DDR alterations elicit specific vulnerabilities. Using multi-omics, inhibitors, and high-content microscopy, we discover a chemoresistant ZEB1-high-expressing sub-population (ZEB1hi) with co-rewired cell-cycle progression and proficient DDR across tumor entities. ZEB1 stimulates accelerated S-phase entry via CDK6, inflicting endogenous DNA replication stress. However, DDR buildups involving constitutive MRE11-dependent fork resection allow homeostatic cycling and enrichment of ZEB1hi cells during transforming growth factor β (TGF-β)-induced EMT and chemotherapy. Thus, ZEB1 promotes G1/S transition to launch a progressive DDR benefitting stress tolerance, which concurrently manifests a targetable vulnerability in chemoresistant ZEB1hi cells. Our study thus highlights the translationally relevant intercept of the DDR and EMT

The EMT transcription factor ZEB1 governs a fitness-promoting but vulnerable DNA replication stress response

Volante M;
2022-01-01

Abstract

The DNA damage response (DDR) and epithelial-to-mesenchymal transition (EMT) are two crucial cellular programs in cancer biology. While the DDR orchestrates cell-cycle progression, DNA repair, and cell death, EMT promotes invasiveness, cellular plasticity, and intratumor heterogeneity. Therapeutic targeting of EMT transcription factors, such as ZEB1, remains challenging, but tumor-promoting DDR alterations elicit specific vulnerabilities. Using multi-omics, inhibitors, and high-content microscopy, we discover a chemoresistant ZEB1-high-expressing sub-population (ZEB1hi) with co-rewired cell-cycle progression and proficient DDR across tumor entities. ZEB1 stimulates accelerated S-phase entry via CDK6, inflicting endogenous DNA replication stress. However, DDR buildups involving constitutive MRE11-dependent fork resection allow homeostatic cycling and enrichment of ZEB1hi cells during transforming growth factor β (TGF-β)-induced EMT and chemotherapy. Thus, ZEB1 promotes G1/S transition to launch a progressive DDR benefitting stress tolerance, which concurrently manifests a targetable vulnerability in chemoresistant ZEB1hi cells. Our study thus highlights the translationally relevant intercept of the DDR and EMT
2022
111819
111819
Schuhwerk H, Kleemann J, Gupta P, van Roey R, Armstark I, Kreileder M, Feldker N, Ramesh V, Hajjaj Y, Fuchs K, Mahapatro M, Hribersek M, Volante M, Groenewoud A, Engel FB, Ceppi P, Eckstein M, Hartmann A, Müller F, Kroll T, Stemmler MP, Brabletz S, Brabletz T
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2211124722017119-main.pdf

Accesso aperto

Dimensione 6.46 MB
Formato Adobe PDF
6.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1904574
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact