As the number of Internet of Things devices is rapidly increasing, there is an urgent need for sustainable and efficient energy sources and management practices in ambient environments. In response, we developed a high-efficiency ambient photovoltaic based on sustainable non-toxic materials and present a full implementation of a long short-term memory (LSTM) based energy management using on-device prediction on IoT sensors solely powered by ambient light harvesters. The power is supplied by dye-sensitised photovoltaic cells based on a copper(ii/i) electrolyte with an unprecedented power conversion efficiency at 38% and 1.0 V open-circuit voltage at 1000 lux (fluorescent lamp). The on-device LSTM predicts changing deployment environments and adapts the devices' computational load accordingly to perpetually operate the energy-harvesting circuit and avoid power losses or brownouts. Merging ambient light harvesting with artificial intelligence presents the possibility of developing fully autonomous, self-powered sensor devices that can be utilized across industries, health care, home environments, and smart cities.

Emerging indoor photovoltaics for self-powered and self-aware IoT towards sustainable energy management

Benesperi, I;
2023-01-01

Abstract

As the number of Internet of Things devices is rapidly increasing, there is an urgent need for sustainable and efficient energy sources and management practices in ambient environments. In response, we developed a high-efficiency ambient photovoltaic based on sustainable non-toxic materials and present a full implementation of a long short-term memory (LSTM) based energy management using on-device prediction on IoT sensors solely powered by ambient light harvesters. The power is supplied by dye-sensitised photovoltaic cells based on a copper(ii/i) electrolyte with an unprecedented power conversion efficiency at 38% and 1.0 V open-circuit voltage at 1000 lux (fluorescent lamp). The on-device LSTM predicts changing deployment environments and adapts the devices' computational load accordingly to perpetually operate the energy-harvesting circuit and avoid power losses or brownouts. Merging ambient light harvesting with artificial intelligence presents the possibility of developing fully autonomous, self-powered sensor devices that can be utilized across industries, health care, home environments, and smart cities.
2023
Inglese
Esperti anonimi
14
20
5350
5360
11
GERMANIA
REGNO UNITO DI GRAN BRETAGNA
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
6
Michaels, H; Rinderle, M; Benesperi, I; Freitag, R; Gagliardi, A; Freitag, M
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Michaels et al. - 2023 - Emerging indoor photovoltaics for self-powered and.pdf

Accesso aperto

Descrizione: Articolo
Tipo di file: PDF EDITORIALE
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1905512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 25
social impact