The genetic plasiticity of viruses is one of the main obstacles to the development of antivirals. The aim of this study has been to assess the ability of two physiologic oxysterols and host-targeting antivirals - namely 25- and 27-hydroxycholesterol (25OHC and 27OHC) - to select resistant strains, using human rhinovirus (HRV) as a challenging model of a viral quasispecies. Moreover, we selected 27OHC for further studies aimed at exploring its potential for the development of antiviral drugs. The results obtained with clonal or serial passage approaches show that 25OHC and 27OHC do not select HRV oxysterol-resistant variants. Moreover, we demonstrate the ability of 27OHC to inhibit the yield of HRV in 3D in vitro fully reconstituted human nasal and bronchial epithelia from cystic fibrosis patients and prevent virus-induced cilia damage. The promising antiviral activity of 27OHC and its competitive advantages over direct-acting antivirals, make this molecule a suitable candidate for further studies to explore its clinical potential.
27-Hydroxycholesterol inhibits rhinovirus replication in vitro and on human nasal and bronchial histocultures without selecting viral resistant variants
Civra, Andrea;Costantino, Matteo;Cavalli, Roberta;Volante, Marco;Poli, Giuseppe
;Lembo, David
2022-01-01
Abstract
The genetic plasiticity of viruses is one of the main obstacles to the development of antivirals. The aim of this study has been to assess the ability of two physiologic oxysterols and host-targeting antivirals - namely 25- and 27-hydroxycholesterol (25OHC and 27OHC) - to select resistant strains, using human rhinovirus (HRV) as a challenging model of a viral quasispecies. Moreover, we selected 27OHC for further studies aimed at exploring its potential for the development of antiviral drugs. The results obtained with clonal or serial passage approaches show that 25OHC and 27OHC do not select HRV oxysterol-resistant variants. Moreover, we demonstrate the ability of 27OHC to inhibit the yield of HRV in 3D in vitro fully reconstituted human nasal and bronchial epithelia from cystic fibrosis patients and prevent virus-induced cilia damage. The promising antiviral activity of 27OHC and its competitive advantages over direct-acting antivirals, make this molecule a suitable candidate for further studies to explore its clinical potential.File | Dimensione | Formato | |
---|---|---|---|
Revised Manuscript - Clear version.docx
Accesso riservato
Descrizione: Civra et al.
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
3.35 MB
Formato
Microsoft Word XML
|
3.35 MB | Microsoft Word XML | Visualizza/Apri Richiedi una copia |
Revised_Manuscript_Clear_version.pdf
Open Access dal 19/06/2023
Descrizione: Civra et al.
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
2.14 MB
Formato
Adobe PDF
|
2.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.