It is well known that the satellite attitude motion exhibits the chaotic phenomenon. This article addresses the challenging problem of chaotic attitude synchronization and anti-synchronization for master-slave satellites under unknown moments of inertia and disturbance torques. First, a fixed-time adaptive synchronization controller is designed by combining the fixed-time control technique and adaptive control technique. The parametric adaptation laws are adopted to identify the unknown parameters in the synchronization error system. Benefiting from the adaptive identifications, the proposed controller is highly robust to unknown moments of inertia and disturbance torques. The practical fixed-time stability of the resulting closed-loop system is strictly achieved. The proposed controller can guarantee all error variables in the closed-loop system regulate to the small residual sets around zero in fixed time. Then, a fixed-time adaptive anti-synchronization controller is developed in a similar way. Finally, simulations studies are conducted to demonstrate the effectiveness and excellent control performance of the proposed controllers.

Chaotic attitude synchronization and anti-synchronization of master-slave satellites using a robust fixed-time adaptive controller

Bekiros S.;
2022-01-01

Abstract

It is well known that the satellite attitude motion exhibits the chaotic phenomenon. This article addresses the challenging problem of chaotic attitude synchronization and anti-synchronization for master-slave satellites under unknown moments of inertia and disturbance torques. First, a fixed-time adaptive synchronization controller is designed by combining the fixed-time control technique and adaptive control technique. The parametric adaptation laws are adopted to identify the unknown parameters in the synchronization error system. Benefiting from the adaptive identifications, the proposed controller is highly robust to unknown moments of inertia and disturbance torques. The practical fixed-time stability of the resulting closed-loop system is strictly achieved. The proposed controller can guarantee all error variables in the closed-loop system regulate to the small residual sets around zero in fixed time. Then, a fixed-time adaptive anti-synchronization controller is developed in a similar way. Finally, simulations studies are conducted to demonstrate the effectiveness and excellent control performance of the proposed controllers.
2022
165
Article number 112883
1
10
Adaptive control; Chaotic attitude anti-synchronization; Chaotic attitude synchronization; Fixed-time control; Master-slave satellites
Alsaade F.W.; Yao Q.; Bekiros S.; Al-zahrani M.S.; Alzahrani A.S.; Jahanshahi H.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1911592
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact