The popular sentiment-based investor index SBW introduced by Baker and Wurgler (2006, 2007) is shown to have no predictive ability for stock returns. However, Huang et al. (2015) developed a new investor sentiment index, SPLS, which can predict monthly stock returns based on a linear framework. However, the linear model may lead to misspecification and lack of robustness. We provide statistical evidence that the relationship between stock returns, SBW and SPLS is characterized by structural instability and inherent nonlinearity. Given this, using a nonparametric causality approach, we show that neither SBW nor SPLS predicts stock market returns or even its volatility, as opposed to previous empirical evidence.
A Nonlinear approach for Predicting Stock Returns and Volatility with the use of Investor Sentiment Indices
BEKIROS S;
2016-01-01
Abstract
The popular sentiment-based investor index SBW introduced by Baker and Wurgler (2006, 2007) is shown to have no predictive ability for stock returns. However, Huang et al. (2015) developed a new investor sentiment index, SPLS, which can predict monthly stock returns based on a linear framework. However, the linear model may lead to misspecification and lack of robustness. We provide statistical evidence that the relationship between stock returns, SBW and SPLS is characterized by structural instability and inherent nonlinearity. Given this, using a nonparametric causality approach, we show that neither SBW nor SPLS predicts stock market returns or even its volatility, as opposed to previous empirical evidence.File | Dimensione | Formato | |
---|---|---|---|
A Nonlinear approach for Predicting Stock Returns and Volatility.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
883.93 kB
Formato
Adobe PDF
|
883.93 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.