: It is well known that the prolonged exposure to UV radiation from sunlight can compromise human health and is particularly damaging to the skin, leading to sunburn, photo-aging and skin cancer. Sunscreen formulations containing UV-filters present a barrier against solar UV and help to mitigate the harmful effects however, concern about their safety for both human and environmental health is still a much-debated topic. EC regulations classify UV-filters depending on their chemical nature, particle size, and mechanism of action. Furthermore, it regulates their use in cosmetic products with specific limitations in terms of concentration (organic UV filters) and particle size and surface modification to reduce their photo-activity (mineral UV filters). The regulations have prompted researchers to identify new materials that show promise for use in sunscreens. In this work, biomimetic hybrid materials composed of titanium-doped hydroxyapatite (TiHA) grown on two different organic templates, derived from animal (gelatin - from pig skin) and vegetable (alginate - from algae) sources. These novel materials were developed and characterized to obtain sustainable UV-filters as a safer alternative for both human and ecosystem health. This 'biomineralization' process yielded TiHA nanoparticles that demonstrated high UV reflectance, low photoactivity, good biocompatibility and an aggregate morphology which prevents dermal penetration. The materials are safe for topical application and for the marine environment; moreover, they can protect organic sunscreen components from photodegradation and yield long-lasting protection.

Biomineralization: A new tool for developing eco-sustainable Ti-doped hydroxyapatite-based hybrid UV filters

Destro, Elena;Fenoglio, Ivana;
2023-01-01

Abstract

: It is well known that the prolonged exposure to UV radiation from sunlight can compromise human health and is particularly damaging to the skin, leading to sunburn, photo-aging and skin cancer. Sunscreen formulations containing UV-filters present a barrier against solar UV and help to mitigate the harmful effects however, concern about their safety for both human and environmental health is still a much-debated topic. EC regulations classify UV-filters depending on their chemical nature, particle size, and mechanism of action. Furthermore, it regulates their use in cosmetic products with specific limitations in terms of concentration (organic UV filters) and particle size and surface modification to reduce their photo-activity (mineral UV filters). The regulations have prompted researchers to identify new materials that show promise for use in sunscreens. In this work, biomimetic hybrid materials composed of titanium-doped hydroxyapatite (TiHA) grown on two different organic templates, derived from animal (gelatin - from pig skin) and vegetable (alginate - from algae) sources. These novel materials were developed and characterized to obtain sustainable UV-filters as a safer alternative for both human and ecosystem health. This 'biomineralization' process yielded TiHA nanoparticles that demonstrated high UV reflectance, low photoactivity, good biocompatibility and an aggregate morphology which prevents dermal penetration. The materials are safe for topical application and for the marine environment; moreover, they can protect organic sunscreen components from photodegradation and yield long-lasting protection.
2023
151
213474
213484
Biomimetic materials; Biomineralization; Eco-sustainability; Photostability; Physical filters
Campodoni, Elisabetta; Montanari, Margherita; Artusi, Chiara; Bergamini, Linda; Bassi, Giada; Destro, Elena; Fenoglio, Ivana; Panseri, Silvia; Tampieri, Anna; Sanson, Alessandra; Sandri, Monica
File in questo prodotto:
File Dimensione Formato  
Campodoni et al._manuscript_per IRIS.pdf

Accesso aperto

Tipo di file: PREPRINT (PRIMA BOZZA)
Dimensione 902.91 kB
Formato Adobe PDF
902.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1913490
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact