Advanced Bayesian methods are employed in estimating dynamic stochastic general equilibrium (DSGE) models. Although policymakers and practitioners are particularly interested in DSGE models, these are typically too stylized to be taken directly to the data and often yield weak prediction results. Hybrid models can deal with some of the DSGE model misspecifications. Major advances in Bayesian estimation methodology could allow these models to outperform well-known time series models and effectively deal with more complex real-world problems as richer sources of data become available. A comparative evaluation of the out-of-sample predictive performance of many different specifications of estimated DSGE models and various classes of VAR models is performed, using datasets from the US economy. Simple and hybrid DSGE models are implemented, such as DSGE-VAR and Factor Augmented DSGEs and tested against standard, Bayesian and Factor Augmented VARs. Moreover, small scale models including the real gross domestic product, the harmonized consumer price index and the nominal short-term federal funds interest rate, are comparatively assessed against medium scale models featuring additionally sticky nominal prices, wage contracts, habit formation, variable capital utilization and investment adjustment costs. The investigated period spans 1960:Q4-2010:Q4 and forecasts are produced for the out-of-sample testing period 1997:Q1-2010:Q4. This comparative validation can be useful to monetary policy analysis and macro-forecasting with the use of advanced Bayesian methods.

Bayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models

BEKIROS S
;
2014-01-01

Abstract

Advanced Bayesian methods are employed in estimating dynamic stochastic general equilibrium (DSGE) models. Although policymakers and practitioners are particularly interested in DSGE models, these are typically too stylized to be taken directly to the data and often yield weak prediction results. Hybrid models can deal with some of the DSGE model misspecifications. Major advances in Bayesian estimation methodology could allow these models to outperform well-known time series models and effectively deal with more complex real-world problems as richer sources of data become available. A comparative evaluation of the out-of-sample predictive performance of many different specifications of estimated DSGE models and various classes of VAR models is performed, using datasets from the US economy. Simple and hybrid DSGE models are implemented, such as DSGE-VAR and Factor Augmented DSGEs and tested against standard, Bayesian and Factor Augmented VARs. Moreover, small scale models including the real gross domestic product, the harmonized consumer price index and the nominal short-term federal funds interest rate, are comparatively assessed against medium scale models featuring additionally sticky nominal prices, wage contracts, habit formation, variable capital utilization and investment adjustment costs. The investigated period spans 1960:Q4-2010:Q4 and forecasts are produced for the out-of-sample testing period 1997:Q1-2010:Q4. This comparative validation can be useful to monetary policy analysis and macro-forecasting with the use of advanced Bayesian methods.
2014
71
298
323
Bayesian estimation; Factor augmented DSGE; Forecasting; Marginal data density; Markov Chain Monte Carlo; Metropolis-Hastings
BEKIROS S; PACCAGNINI A
File in questo prodotto:
File Dimensione Formato  
Bayesian forecasting with a Factor-Augmented Vector Autoregressive DSGE model.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 503.68 kB
Formato Adobe PDF
503.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1913870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact