This paper investigates the profitability of a trading strategy, based on recurrent neural networks, that attempts to predict the direction-of-change of the market in the case of the NASDAQ composite index. The sample extends over the period 8 February 1971 to 7 April 1998, while the sub-period 8 April 1998 to 5 February 2002 has been reserved for out-of-sample testing purposes. We demonstrate that the incorporation in the trading rule of estimates of the conditional volatility changes strongly enhances its profitability, after the inclusion of transaction costs, during bear market periods. This improvement is being measured with respect to a nested model that does not include the volatility variable as well as to a buy-and-hold strategy. We suggest that our findings can be justified by invoking either the 'volatility feedback' theory or the existence of portfolio insurance schemes in the equity markets. Our results are also consistent with the view that volatility dependence produces sign dependence.
Direction-of-change forecasting using a Volatility based Recurrent Neural Network
BEKIROS S
;
2008-01-01
Abstract
This paper investigates the profitability of a trading strategy, based on recurrent neural networks, that attempts to predict the direction-of-change of the market in the case of the NASDAQ composite index. The sample extends over the period 8 February 1971 to 7 April 1998, while the sub-period 8 April 1998 to 5 February 2002 has been reserved for out-of-sample testing purposes. We demonstrate that the incorporation in the trading rule of estimates of the conditional volatility changes strongly enhances its profitability, after the inclusion of transaction costs, during bear market periods. This improvement is being measured with respect to a nested model that does not include the volatility variable as well as to a buy-and-hold strategy. We suggest that our findings can be justified by invoking either the 'volatility feedback' theory or the existence of portfolio insurance schemes in the equity markets. Our results are also consistent with the view that volatility dependence produces sign dependence.File | Dimensione | Formato | |
---|---|---|---|
Direction-of-change forecasting using a Volatility based Recurrent Neural Network.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
114.36 kB
Formato
Adobe PDF
|
114.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.