In this paper we propose the construction of univariate low-degree quasi-interpolating splines in the Bernstein basis, considering C^1 and C^2 smoothness, specific polynomial reproduction properties and different sets of evaluation points. The splines are directly determined by setting their Bernstein–Bézier coefficients to appropriate combinations of the given data values. Moreover, we get quasi-interpolating splines with special properties, imposing particular requirements in case of free parameters. Finally, we provide numerical tests showing the performances of the proposed methods.

Low-degree spline quasi-interpolants in the Bernstein basis

Eddargani S.;Remogna S.
2023-01-01

Abstract

In this paper we propose the construction of univariate low-degree quasi-interpolating splines in the Bernstein basis, considering C^1 and C^2 smoothness, specific polynomial reproduction properties and different sets of evaluation points. The splines are directly determined by setting their Bernstein–Bézier coefficients to appropriate combinations of the given data values. Moreover, we get quasi-interpolating splines with special properties, imposing particular requirements in case of free parameters. Finally, we provide numerical tests showing the performances of the proposed methods.
2023
457
1
18
Quasi-interpolation, Bernstein basis, Bézier-ordinates
Barrera D.; Eddargani S.; Ibanez M.J.; Remogna S.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0096300323003193-main.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1916370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact