In the present study, a new neural network-based terminal sliding mode technique is proposed to stabilize and synchronize fractional-order chaotic ecological systems in finite-time. The Chebyshev neural network is implemented to estimate unknown functions of the system. Moreover, through the proposed Chebyshev neural network observer, the effects of external disturbances are fully taken into account. The weights of the Chebyshev neural network observer are adjusted based on adaptive laws. The finite-time convergence of the closed-loop system, which is a new concept for ecological systems, is proven. Then, the dependency of the system on the value of the fractional time derivatives is investigated. Lastly, the proposed control scheme is applied to the fractional-order ecological system. Through numerical simulations, the performance of the developed technique for synchronization and stabilization are assessed and compared with a conventional method. The numerical simulations strongly corroborate the effective performance of the proposed control technique in terms of accuracy, robustness, and convergence time for the unknown nonlinear system in the presence of external disturbances.

Incorporating fast and intelligent control technique into ecology: A Chebyshev neural network-based terminal sliding mode approach for fractional chaotic ecological systems

Bekiros S.;
2021-01-01

Abstract

In the present study, a new neural network-based terminal sliding mode technique is proposed to stabilize and synchronize fractional-order chaotic ecological systems in finite-time. The Chebyshev neural network is implemented to estimate unknown functions of the system. Moreover, through the proposed Chebyshev neural network observer, the effects of external disturbances are fully taken into account. The weights of the Chebyshev neural network observer are adjusted based on adaptive laws. The finite-time convergence of the closed-loop system, which is a new concept for ecological systems, is proven. Then, the dependency of the system on the value of the fractional time derivatives is investigated. Lastly, the proposed control scheme is applied to the fractional-order ecological system. Through numerical simulations, the performance of the developed technique for synchronization and stabilization are assessed and compared with a conventional method. The numerical simulations strongly corroborate the effective performance of the proposed control technique in terms of accuracy, robustness, and convergence time for the unknown nonlinear system in the presence of external disturbances.
2021
47
Article number 100943
1
13
Chaos synchronization; Chebyshev neural network; Ecological systems; Fractional calculus; Lotka-Volterra system; Terminal sliding mode control
Wang B.; Jahanshahi H.; Dutta H.; Zambrano-Serrano E.; Grebenyuk V.; Bekiros S.; Aly A.A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1917614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 31
social impact