This study aims at disclosing the effect of small temperature drops (10–15 °C) of the electrolyte on Contact Glow Discharge Electrolysis (CGDE). In our experiments, we measure the temperature change of electrolyte and electrode as well as the change in current following on from the addition of, first, frozen and, second, boiling KOH aqueous solution (0.1 M). Quite surprisingly, only the addition of frozen KOH aqueous solution has a significant impact on current (+130%), caused by the decrease in electrolyte temperature (-11 °C). In contrast, the addition of boiling KOH aqueous solution has a negligible effect on current. A very similar behavior is recorded when frozen or boiling type III deionized water is used: the addition of ice has an even stronger impact on current (+145 %) and on electrolyte temperature (-14 °C), while adding boiling water has no measurable effect. Thus, we here demonstrated that electrolyte temperature is critical for managing the responsiveness of the CGDE system. Our results pave the way toward temperature controlled CGDE, a powerful tool for a greener and a more efficient environmental chemistry.

On the impact of electrolyte temperature on contact glow discharge electrolysis

Bonomo M.
2023-01-01

Abstract

This study aims at disclosing the effect of small temperature drops (10–15 °C) of the electrolyte on Contact Glow Discharge Electrolysis (CGDE). In our experiments, we measure the temperature change of electrolyte and electrode as well as the change in current following on from the addition of, first, frozen and, second, boiling KOH aqueous solution (0.1 M). Quite surprisingly, only the addition of frozen KOH aqueous solution has a significant impact on current (+130%), caused by the decrease in electrolyte temperature (-11 °C). In contrast, the addition of boiling KOH aqueous solution has a negligible effect on current. A very similar behavior is recorded when frozen or boiling type III deionized water is used: the addition of ice has an even stronger impact on current (+145 %) and on electrolyte temperature (-14 °C), while adding boiling water has no measurable effect. Thus, we here demonstrated that electrolyte temperature is critical for managing the responsiveness of the CGDE system. Our results pave the way toward temperature controlled CGDE, a powerful tool for a greener and a more efficient environmental chemistry.
2023
153
1
5
https://www.sciencedirect.com/science/article/pii/S1388248123001169
Contact Glow Discharge Electrolysis, CGDE, Temperature control, Environmental chemistry, Ionic conductivity
Rottach K.; Lang G.; Gastaldi M.; Gerbaldi C.; Bonomo M.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1388248123001169-main.pdf

Accesso aperto

Descrizione: Articolo
Tipo di file: PDF EDITORIALE
Dimensione 2.32 MB
Formato Adobe PDF
2.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1931491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact