In June 2021, the US Federal Drug and Food Administration (FDA) granted accelerated approval for the antibody aducanumab and, in January 2023, also for the antibody lecanemab, based on a perceived drug-induced removal of cerebral amyloid-beta as assessed by amyloid-PET and, in the case of lecanemab, also a presumption of limited clinical efficacy. Approval of the antibody donanemab is awaiting further data. However, published trial data indicate few, small and uncertain clinical benefits, below what is considered "clinically meaningful" and similar to the effect of conventional medication. Furthermore, a therapy-related decrease in the amyloid-PET signal may also reflect increased cell damage rather than simply "amyloid removal". This interpretation is more consistent with increased rates of amyloid-related imaging abnormalities and brain volume loss in treated patients, relative to placebo. We also challenge the current diagnostic criteria for AD based on amyloid-PET imaging biomarkers and recommend that future anti-AD therapy trials apply: (1) diagnosis of AD based on the co-occurrence of cognitive decline and decreased cerebral metabolism assessed by FDA-approved FDG-PET, (2) therapy efficacy determined by favorable effect on cognitive ability, cerebral metabolism by FDG-PET, and brain volumes by MRI, and (3) neuropathologic examination of all deaths occurring in these trials.

FDG-PET versus Amyloid-PET Imaging for Diagnosis and Response Evaluation in Alzheimer’s Disease: Benefits and Pitfalls

Costa T.;
2023-01-01

Abstract

In June 2021, the US Federal Drug and Food Administration (FDA) granted accelerated approval for the antibody aducanumab and, in January 2023, also for the antibody lecanemab, based on a perceived drug-induced removal of cerebral amyloid-beta as assessed by amyloid-PET and, in the case of lecanemab, also a presumption of limited clinical efficacy. Approval of the antibody donanemab is awaiting further data. However, published trial data indicate few, small and uncertain clinical benefits, below what is considered "clinically meaningful" and similar to the effect of conventional medication. Furthermore, a therapy-related decrease in the amyloid-PET signal may also reflect increased cell damage rather than simply "amyloid removal". This interpretation is more consistent with increased rates of amyloid-related imaging abnormalities and brain volume loss in treated patients, relative to placebo. We also challenge the current diagnostic criteria for AD based on amyloid-PET imaging biomarkers and recommend that future anti-AD therapy trials apply: (1) diagnosis of AD based on the co-occurrence of cognitive decline and decreased cerebral metabolism assessed by FDA-approved FDG-PET, (2) therapy efficacy determined by favorable effect on cognitive ability, cerebral metabolism by FDG-PET, and brain volumes by MRI, and (3) neuropathologic examination of all deaths occurring in these trials.
2023
13
13
2254
2265
ARIA; Alzheimer’s disease; Aβ; FDG-PET; MRI; amyloid; amyloid-PET
Hoilund-Carlsen P.F.; Revheim M.-E.; Costa T.; Kepp K.P.; Castellani R.J.; Perry G.; Alavi A.; Barrio J.R.
File in questo prodotto:
File Dimensione Formato  
diagnostics-13-02254-v2.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 518.42 kB
Formato Adobe PDF
518.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1933090
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact