We investigate the pluriclosed flow on Oeljeklaus-Toma manifolds. We parameterize left-invariant pluriclosed metrics on Oeljeklaus-Toma manifolds, and we classify the ones which lift to an algebraic soliton of the pluriclosed flow on the universal covering. We further show that the pluriclosed flow starting from a left-invariant pluriclosed metric has a long-time solution omega t which once normalized collapses to a torus in the Gromov-Hausdorff sense. Moreover, the lift of 1/1+t omega(t) to the universal covering of the manifold converges in the Cheeger-Gromov sense to (H-s x C-s, omega tilde (infinity)), where omega tilde (infinity) is an algebraic soliton.
On the pluriclosed flow on Oeljeklaus-Toma manifolds
Fusi, E;Vezzoni, L
2022-01-01
Abstract
We investigate the pluriclosed flow on Oeljeklaus-Toma manifolds. We parameterize left-invariant pluriclosed metrics on Oeljeklaus-Toma manifolds, and we classify the ones which lift to an algebraic soliton of the pluriclosed flow on the universal covering. We further show that the pluriclosed flow starting from a left-invariant pluriclosed metric has a long-time solution omega t which once normalized collapses to a torus in the Gromov-Hausdorff sense. Moreover, the lift of 1/1+t omega(t) to the universal covering of the manifold converges in the Cheeger-Gromov sense to (H-s x C-s, omega tilde (infinity)), where omega tilde (infinity) is an algebraic soliton.File | Dimensione | Formato | |
---|---|---|---|
2206.13149.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
293.19 kB
Formato
Adobe PDF
|
293.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.