We consider the problem of designing experiments to detect the presence of a specified heteroscedastity in Gaussian regression models. We study the relationship of the D-s- and KL-criteria with the noncentrality parameter of the asymptotic chi-squared distribution of a likelihood-based test, for local alternatives. We found that, when the heteroscedastity depends on one parameter, the two criteria coincide asymptotically and that the D-1-criterion is proportional to the noncentrality parameter. Differently, when it depends on several parameters, the KL-optimum design converges to the design that maximizes the noncentrality parameter. Our theoretical findings are confirmed through a simulation study.
Designing to detect heteroscedasticity in a regression model
Lanteri, A
;
2023-01-01
Abstract
We consider the problem of designing experiments to detect the presence of a specified heteroscedastity in Gaussian regression models. We study the relationship of the D-s- and KL-criteria with the noncentrality parameter of the asymptotic chi-squared distribution of a likelihood-based test, for local alternatives. We found that, when the heteroscedastity depends on one parameter, the two criteria coincide asymptotically and that the D-1-criterion is proportional to the noncentrality parameter. Differently, when it depends on several parameters, the KL-optimum design converges to the design that maximizes the noncentrality parameter. Our theoretical findings are confirmed through a simulation study.File | Dimensione | Formato | |
---|---|---|---|
JRSSb_2023.pdf
Accesso riservato
Descrizione: JRSSb_2023
Tipo di file:
PDF EDITORIALE
Dimensione
269 kB
Formato
Adobe PDF
|
269 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.