We prove an Alt–Caffarelli–Friedman montonicity formula for pairs of functions solving elliptic equations driven by different ellipticity matrices in their positivity sets. As an application, we derive Liouville-type theorems for subsolutions of some elliptic systems, and we analyze segregation phenomena for systems of equations where the diffusion of each density is described by a different operator.

An anisotropic monotonicity formula, with applications to some segregation problems

Soave, Nicola;Terracini, Susanna
2023-01-01

Abstract

We prove an Alt–Caffarelli–Friedman montonicity formula for pairs of functions solving elliptic equations driven by different ellipticity matrices in their positivity sets. As an application, we derive Liouville-type theorems for subsolutions of some elliptic systems, and we analyze segregation phenomena for systems of equations where the diffusion of each density is described by a different operator.
2023
25
9
3727
3765
https://arxiv.org/abs/2004.08853
Soave, Nicola; Terracini, Susanna
File in questo prodotto:
File Dimensione Formato  
SoaTer JEMS 2023.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 445.68 kB
Formato Adobe PDF
445.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
SoaveTerracini JEMS final.pdf

Accesso aperto

Descrizione: Versione finale
Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 492.38 kB
Formato Adobe PDF
492.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1938234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact