We prove an Alt–Caffarelli–Friedman montonicity formula for pairs of functions solving elliptic equations driven by different ellipticity matrices in their positivity sets. As an application, we derive Liouville-type theorems for subsolutions of some elliptic systems, and we analyze segregation phenomena for systems of equations where the diffusion of each density is described by a different operator.
An anisotropic monotonicity formula, with applications to some segregation problems
Soave, Nicola;Terracini, Susanna
2023-01-01
Abstract
We prove an Alt–Caffarelli–Friedman montonicity formula for pairs of functions solving elliptic equations driven by different ellipticity matrices in their positivity sets. As an application, we derive Liouville-type theorems for subsolutions of some elliptic systems, and we analyze segregation phenomena for systems of equations where the diffusion of each density is described by a different operator.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
SoaTer JEMS 2023.pdf
Accesso riservato
Tipo di file:
PDF EDITORIALE
Dimensione
445.68 kB
Formato
Adobe PDF
|
445.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
SoaveTerracini JEMS final.pdf
Accesso aperto
Descrizione: Versione finale
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
492.38 kB
Formato
Adobe PDF
|
492.38 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.