We report the first >99% confidence detection of X-ray polarization in BL Lacertae. During a recent X-ray/γ-ray outburst, a 287 ks observation (2022 November 27-30) was taken using the Imaging X-ray Polarimetry Explorer (IXPE), together with contemporaneous multiwavelength observations from the Neil Gehrels Swift observatory and XMM-Newton in soft X-rays (0.3-10 keV), NuSTAR in hard X-rays (3-70 keV), and optical polarization from the Calar Alto and Perkins Telescope observatories. Our contemporaneous X-ray data suggest that the IXPE energy band is at the crossover between the low- and high-frequency blazar emission humps. The source displays significant variability during the observation, and we measure polarization in three separate time bins. Contemporaneous X-ray spectra allow us to determine the relative contribution from each emission hump. We find >99% confidence X-ray polarization Π 2 - 4 keV = 21.7 − 7.9 + 5.6 % and electric vector polarization angle ψ 2-4keV = −28.°7 ± 8.°7 in the time bin with highest estimated synchrotron flux contribution. We discuss possible implications of our observations, including previous IXPE BL Lacertae pointings, tentatively concluding that synchrotron self-Compton emission dominates over hadronic emission processes during the observed epochs.
X-Ray Polarization of BL Lacertae in Outburst
Cibrario N.;Bonino R.;Massaro F.;
2023-01-01
Abstract
We report the first >99% confidence detection of X-ray polarization in BL Lacertae. During a recent X-ray/γ-ray outburst, a 287 ks observation (2022 November 27-30) was taken using the Imaging X-ray Polarimetry Explorer (IXPE), together with contemporaneous multiwavelength observations from the Neil Gehrels Swift observatory and XMM-Newton in soft X-rays (0.3-10 keV), NuSTAR in hard X-rays (3-70 keV), and optical polarization from the Calar Alto and Perkins Telescope observatories. Our contemporaneous X-ray data suggest that the IXPE energy band is at the crossover between the low- and high-frequency blazar emission humps. The source displays significant variability during the observation, and we measure polarization in three separate time bins. Contemporaneous X-ray spectra allow us to determine the relative contribution from each emission hump. We find >99% confidence X-ray polarization Π 2 - 4 keV = 21.7 − 7.9 + 5.6 % and electric vector polarization angle ψ 2-4keV = −28.°7 ± 8.°7 in the time bin with highest estimated synchrotron flux contribution. We discuss possible implications of our observations, including previous IXPE BL Lacertae pointings, tentatively concluding that synchrotron self-Compton emission dominates over hadronic emission processes during the observed epochs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.