Green roofs (GRs) are considered sustainable solutions for the adaptation of urban water management to climate change. The use of GRs is particularly promising in urban environments like the Metropolitan Area of Milan, the most urbanized area in Italy. In this work, we evaluated the subsurface runoff coefficient at the event-time scale, for more than one year of observations, of 68 small-scale test beds comprising different configurations of green roofs (e.g., different vegetations, types and depths of growing media, and different slopes) installed in the Metropolitan Area of Milan. The objectives of this study are three-fold. Firstly, the controlling factors of the hydraulic have been assessed for efficiency. We calculated a mean drainage flow rate of 51%, finding that growing media play a significant role in determining the drainage flow during the spring, at the beginning of the vegetative period. During this season, water retention in fertilized beds increases significantly. At the beginning of the summer, the vegetation cover is able to significantly reduce the drainage flow, playing an even more crucial role with respect to the growing medium material. However, we found that the vegetation type (grass field and Sedum) does not play a significant role in the retention processes. Secondly, the delay of the peak flow rate was determined. We found a precipitation peak delay from 1 to 2 h, which would be sufficient to guarantee environmental benefits for urban drainage. Finally, the factors controlling the hydraulic efficiency of GRs for individual precipitation events were assessed. We found that soil moisture and cumulated precipitation are both significant factors determining the drainage flow rate. In conclusion, we point out that soil moisture is one of the main parameters characterizing GR drainage and should be further considered in future research efforts devoted to the analysis of GR performance.

Factors controlling the hydraulic efficiency of green roofs in the metropolitan area of milan (Italy)

Colombo N.;
2021-01-01

Abstract

Green roofs (GRs) are considered sustainable solutions for the adaptation of urban water management to climate change. The use of GRs is particularly promising in urban environments like the Metropolitan Area of Milan, the most urbanized area in Italy. In this work, we evaluated the subsurface runoff coefficient at the event-time scale, for more than one year of observations, of 68 small-scale test beds comprising different configurations of green roofs (e.g., different vegetations, types and depths of growing media, and different slopes) installed in the Metropolitan Area of Milan. The objectives of this study are three-fold. Firstly, the controlling factors of the hydraulic have been assessed for efficiency. We calculated a mean drainage flow rate of 51%, finding that growing media play a significant role in determining the drainage flow during the spring, at the beginning of the vegetative period. During this season, water retention in fertilized beds increases significantly. At the beginning of the summer, the vegetation cover is able to significantly reduce the drainage flow, playing an even more crucial role with respect to the growing medium material. However, we found that the vegetation type (grass field and Sedum) does not play a significant role in the retention processes. Secondly, the delay of the peak flow rate was determined. We found a precipitation peak delay from 1 to 2 h, which would be sufficient to guarantee environmental benefits for urban drainage. Finally, the factors controlling the hydraulic efficiency of GRs for individual precipitation events were assessed. We found that soil moisture and cumulated precipitation are both significant factors determining the drainage flow rate. In conclusion, we point out that soil moisture is one of the main parameters characterizing GR drainage and should be further considered in future research efforts devoted to the analysis of GR performance.
2021
Inglese
Esperti anonimi
13
24
1
13
13
green roof; peak flow delay; soil moisture; water retention; urban hydrology
no
1 – prodotto con file in versione Open Access (allegherò il file al passo 6 - Carica)
262
11
Salerno F.; Valsecchi L.; Minoia R.; Copetti D.; Tartari G.; Guyennon N.; Colombo N.; Pirola N.; Barozzi B.; Bellazzi A.; Marziali L.
info:eu-repo/semantics/article
open
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
File Dimensione Formato  
Salerno et al 2021.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1944350
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact