In this note we consider submersions from compact manifolds, homotopy equivalent to the Eschenburg or Bazaikin spaces of positive curvature. We show that if the submersion is nontrivial, the dimension of the base is greater than the dimension of the fiber. Together with previous results, this proves the Petersen-Wilhelm conjecture for all the known compact manifolds with positive curvature.

A note on the Petersen-Wilhelm conjecture

Radeschi M.
2018-01-01

Abstract

In this note we consider submersions from compact manifolds, homotopy equivalent to the Eschenburg or Bazaikin spaces of positive curvature. We show that if the submersion is nontrivial, the dimension of the base is greater than the dimension of the fiber. Together with previous results, this proves the Petersen-Wilhelm conjecture for all the known compact manifolds with positive curvature.
2018
146
10
4447
4458
Gonzalez-alvaro D.; Radeschi M.
File in questo prodotto:
File Dimensione Formato  
S0002-9939-2018-14070-8.pdf

Accesso aperto

Dimensione 208.07 kB
Formato Adobe PDF
208.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945017
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact