Malaria is still the most important parasitic infectious disease. Numerous substances are known to have antimalarial activity; among them, artemisinin is the most widely used one, and artemisinin-based combination therapy (ACT) is recommended for the treatment of Plasmodium falciparum (P.f.) malaria. Antitumor, immunomodulatory, and other therapeutic applications of artemisinin are under extensive study. Several different mechanisms of action were proposed for dihydroartemisinin (DHA), the active metabolite of artemisinin, such as eliciting oxidative stress in target cells. The goal of this study is to monitor the generation of reactive oxygen species (ROS) and lipid peroxidation product 4-hydroxynonenal (4-HNE) by DHA in P.f.-infected human erythrocytes. Checking ROS and 4-HNE-protein adducts kinetics along the maturation of the parasite, we detected the highest level of 4-HNE in ring forms of P.f. due to DHA treatment. Low micromolar concentrations of DHA quickly induced levels of 4-HNE-adducts which are supposed to be damaging. Mass spectrometry identified the P.f. protein cysteine proteinase falcipain-1 as being heavily modified by 4-HNE, and plausibly, 4-HNE conjugation with vital P.f. proteins might contribute to DHA-elicited parasite death. In conclusion, significant 4-HNE accumulation was detectable after DHA treatment, though, at concentrations well above pharmacologically effective ranges in malaria treatment, but at concentrations described for antitumor activity. Thus, lipid peroxidation with consequent 4-HNE conjugation of functionally relevant proteins might be considered as a uniform mechanism for how DHA potentiates antimalarials' action in ACT and controls the progression of tumors.

Micromolar Dihydroartemisinin Concentrations Elicit Lipoperoxidation in Plasmodium falciparum-Infected Erythrocytes

Skorokhod, Oleksii
;
Valente, Elena;Mandili, Giorgia;Ulliers, Daniela;Schwarzer, Evelin
2023-01-01

Abstract

Malaria is still the most important parasitic infectious disease. Numerous substances are known to have antimalarial activity; among them, artemisinin is the most widely used one, and artemisinin-based combination therapy (ACT) is recommended for the treatment of Plasmodium falciparum (P.f.) malaria. Antitumor, immunomodulatory, and other therapeutic applications of artemisinin are under extensive study. Several different mechanisms of action were proposed for dihydroartemisinin (DHA), the active metabolite of artemisinin, such as eliciting oxidative stress in target cells. The goal of this study is to monitor the generation of reactive oxygen species (ROS) and lipid peroxidation product 4-hydroxynonenal (4-HNE) by DHA in P.f.-infected human erythrocytes. Checking ROS and 4-HNE-protein adducts kinetics along the maturation of the parasite, we detected the highest level of 4-HNE in ring forms of P.f. due to DHA treatment. Low micromolar concentrations of DHA quickly induced levels of 4-HNE-adducts which are supposed to be damaging. Mass spectrometry identified the P.f. protein cysteine proteinase falcipain-1 as being heavily modified by 4-HNE, and plausibly, 4-HNE conjugation with vital P.f. proteins might contribute to DHA-elicited parasite death. In conclusion, significant 4-HNE accumulation was detectable after DHA treatment, though, at concentrations well above pharmacologically effective ranges in malaria treatment, but at concentrations described for antitumor activity. Thus, lipid peroxidation with consequent 4-HNE conjugation of functionally relevant proteins might be considered as a uniform mechanism for how DHA potentiates antimalarials' action in ACT and controls the progression of tumors.
2023
12
7
1468
1476
https://www.mdpi.com/2076-3921/12/7/1468
4-hydroxynonenal; Plasmodium falciparum; ROS; cysteine proteinase falcipain 1; dihydroartemisinin; endoperoxide
Skorokhod, Oleksii; Valente, Elena; Mandili, Giorgia; Ulliers, Daniela; Schwarzer, Evelin
File in questo prodotto:
File Dimensione Formato  
Skorokhod Schwarzer - Micromolar Artemisinin - Antioxidants 2023.pdf

Accesso aperto

Tipo di file: PDF EDITORIALE
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945204
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact