The house of an algebraic integer is the maximum absolute value of its algebraic conjugates. Lower bounds for the house may be easier to prove than lower bounds for the height, as V. Dimitrov’s recent proof of the Schinzel–Zassenhaus conjecture suggests. We prove an analogue for the house of a recent conjecture by G. Rémond on lower bounds for the height in some radical extensions.

Lower bounds for the house in some radical extensions

Amoroso, Francesco
2024-01-01

Abstract

The house of an algebraic integer is the maximum absolute value of its algebraic conjugates. Lower bounds for the house may be easier to prove than lower bounds for the height, as V. Dimitrov’s recent proof of the Schinzel–Zassenhaus conjecture suggests. We prove an analogue for the house of a recent conjecture by G. Rémond on lower bounds for the height in some radical extensions.
2024
63
2
497
505
https://link.springer.com/article/10.1007/s11139-023-00771-9
Heights; House; Radical extensions;
Amoroso, Francesco
File in questo prodotto:
File Dimensione Formato  
casaRemond8.pdf

Open Access dal 02/09/2024

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 347.81 kB
Formato Adobe PDF
347.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/1945377
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact